MakeItFrom.com
Menu (ESC)

S39274 Stainless Steel vs. EN 1.0345 Steel

Both S39274 stainless steel and EN 1.0345 steel are iron alloys. They have 63% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is S39274 stainless steel and the bottom bar is EN 1.0345 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 270
120
Elastic (Young's, Tensile) Modulus, GPa 210
190
Elongation at Break, % 17
27
Fatigue Strength, MPa 380
170
Poisson's Ratio 0.27
0.29
Shear Modulus, GPa 81
73
Shear Strength, MPa 560
270
Tensile Strength: Ultimate (UTS), MPa 900
420
Tensile Strength: Yield (Proof), MPa 620
230

Thermal Properties

Latent Heat of Fusion, J/g 300
250
Maximum Temperature: Mechanical, °C 1100
400
Melting Completion (Liquidus), °C 1480
1460
Melting Onset (Solidus), °C 1430
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 16
49
Thermal Expansion, µm/m-K 13
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 24
2.1
Density, g/cm3 8.0
7.9
Embodied Carbon, kg CO2/kg material 4.3
1.5
Embodied Energy, MJ/kg 60
19
Embodied Water, L/kg 180
48

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140
96
Resilience: Unit (Modulus of Resilience), kJ/m3 940
140
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 32
15
Strength to Weight: Bending, points 26
16
Thermal Diffusivity, mm2/s 4.2
13
Thermal Shock Resistance, points 25
13

Alloy Composition

Aluminum (Al), % 0
0.020 to 0.024
Carbon (C), % 0 to 0.030
0 to 0.16
Chromium (Cr), % 24 to 26
0 to 0.3
Copper (Cu), % 0.2 to 0.8
0 to 0.3
Iron (Fe), % 57 to 65.6
97.2 to 99.38
Manganese (Mn), % 0 to 1.0
0.6 to 1.2
Molybdenum (Mo), % 2.5 to 3.5
0 to 0.080
Nickel (Ni), % 6.0 to 8.0
0 to 0.3
Niobium (Nb), % 0
0 to 0.020
Nitrogen (N), % 0.24 to 0.32
0 to 0.012
Phosphorus (P), % 0 to 0.030
0 to 0.025
Silicon (Si), % 0 to 0.8
0 to 0.35
Sulfur (S), % 0 to 0.020
0 to 0.010
Titanium (Ti), % 0
0 to 0.030
Tungsten (W), % 1.5 to 2.5
0
Vanadium (V), % 0
0 to 0.020