MakeItFrom.com
Menu (ESC)

S39274 Stainless Steel vs. C90400 Bronze

S39274 stainless steel belongs to the iron alloys classification, while C90400 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is S39274 stainless steel and the bottom bar is C90400 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 270
77
Elastic (Young's, Tensile) Modulus, GPa 210
110
Elongation at Break, % 17
24
Poisson's Ratio 0.27
0.34
Shear Modulus, GPa 81
41
Tensile Strength: Ultimate (UTS), MPa 900
310
Tensile Strength: Yield (Proof), MPa 620
180

Thermal Properties

Latent Heat of Fusion, J/g 300
190
Maximum Temperature: Mechanical, °C 1100
170
Melting Completion (Liquidus), °C 1480
990
Melting Onset (Solidus), °C 1430
850
Specific Heat Capacity, J/kg-K 470
370
Thermal Conductivity, W/m-K 16
75
Thermal Expansion, µm/m-K 13
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
12
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
12

Otherwise Unclassified Properties

Base Metal Price, % relative 24
34
Density, g/cm3 8.0
8.7
Embodied Carbon, kg CO2/kg material 4.3
3.5
Embodied Energy, MJ/kg 60
56
Embodied Water, L/kg 180
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140
65
Resilience: Unit (Modulus of Resilience), kJ/m3 940
150
Stiffness to Weight: Axial, points 14
7.0
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 32
10
Strength to Weight: Bending, points 26
12
Thermal Diffusivity, mm2/s 4.2
23
Thermal Shock Resistance, points 25
11

Alloy Composition

Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.020
Boron (B), % 0
0 to 0.1
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 24 to 26
0
Copper (Cu), % 0.2 to 0.8
86 to 89
Iron (Fe), % 57 to 65.6
0 to 0.4
Lead (Pb), % 0
0 to 0.090
Manganese (Mn), % 0 to 1.0
0 to 0.010
Molybdenum (Mo), % 2.5 to 3.5
0
Nickel (Ni), % 6.0 to 8.0
0 to 1.0
Nitrogen (N), % 0.24 to 0.32
0
Phosphorus (P), % 0 to 0.030
0 to 0.050
Silicon (Si), % 0 to 0.8
0 to 0.0050
Sulfur (S), % 0 to 0.020
0.1 to 0.65
Tin (Sn), % 0
7.5 to 8.5
Tungsten (W), % 1.5 to 2.5
0
Zinc (Zn), % 0
1.0 to 5.0
Zirconium (Zr), % 0
0 to 0.1
Residuals, % 0
0 to 0.7