MakeItFrom.com
Menu (ESC)

S39277 Stainless Steel vs. SAE-AISI 1090 Steel

Both S39277 stainless steel and SAE-AISI 1090 steel are iron alloys. They have 61% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is S39277 stainless steel and the bottom bar is SAE-AISI 1090 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 250
220 to 280
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 28
11
Fatigue Strength, MPa 480
320 to 380
Poisson's Ratio 0.27
0.29
Reduction in Area, % 57
28 to 45
Shear Modulus, GPa 80
72
Shear Strength, MPa 600
470 to 570
Tensile Strength: Ultimate (UTS), MPa 930
790 to 950
Tensile Strength: Yield (Proof), MPa 660
520 to 610

Thermal Properties

Latent Heat of Fusion, J/g 300
240
Maximum Temperature: Mechanical, °C 1100
400
Melting Completion (Liquidus), °C 1460
1450
Melting Onset (Solidus), °C 1410
1410
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 16
50
Thermal Expansion, µm/m-K 13
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
7.1
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
8.2

Otherwise Unclassified Properties

Base Metal Price, % relative 23
1.8
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 4.2
1.4
Embodied Energy, MJ/kg 59
19
Embodied Water, L/kg 180
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 240
82 to 91
Resilience: Unit (Modulus of Resilience), kJ/m3 1070
730 to 1000
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 33
28 to 34
Strength to Weight: Bending, points 27
24 to 27
Thermal Diffusivity, mm2/s 4.2
13
Thermal Shock Resistance, points 26
25 to 31

Alloy Composition

Carbon (C), % 0 to 0.025
0.85 to 1.0
Chromium (Cr), % 24 to 26
0
Copper (Cu), % 1.2 to 2.0
0
Iron (Fe), % 56.8 to 64.3
98 to 98.6
Manganese (Mn), % 0 to 0.8
0.6 to 0.9
Molybdenum (Mo), % 3.0 to 4.0
0
Nickel (Ni), % 6.5 to 8.0
0
Nitrogen (N), % 0.23 to 0.33
0
Phosphorus (P), % 0 to 0.025
0 to 0.040
Silicon (Si), % 0 to 0.8
0
Sulfur (S), % 0 to 0.0020
0 to 0.050
Tungsten (W), % 0.8 to 1.2
0