MakeItFrom.com
Menu (ESC)

S39277 Stainless Steel vs. N08332 Stainless Steel

Both S39277 stainless steel and N08332 stainless steel are iron alloys. Both are furnished in the annealed condition. They have 70% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is S39277 stainless steel and the bottom bar is N08332 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 250
170
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 28
34
Fatigue Strength, MPa 480
170
Poisson's Ratio 0.27
0.28
Shear Modulus, GPa 80
76
Shear Strength, MPa 600
350
Tensile Strength: Ultimate (UTS), MPa 930
520
Tensile Strength: Yield (Proof), MPa 660
210

Thermal Properties

Latent Heat of Fusion, J/g 300
310
Maximum Temperature: Corrosion, °C 450
420
Maximum Temperature: Mechanical, °C 1100
1050
Melting Completion (Liquidus), °C 1460
1390
Melting Onset (Solidus), °C 1410
1340
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 16
12
Thermal Expansion, µm/m-K 13
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 23
32
Density, g/cm3 7.9
8.0
Embodied Carbon, kg CO2/kg material 4.2
5.4
Embodied Energy, MJ/kg 59
77
Embodied Water, L/kg 180
190

Common Calculations

PREN (Pitting Resistance) 43
19
Resilience: Ultimate (Unit Rupture Work), MJ/m3 240
140
Resilience: Unit (Modulus of Resilience), kJ/m3 1070
110
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 33
18
Strength to Weight: Bending, points 27
18
Thermal Diffusivity, mm2/s 4.2
3.1
Thermal Shock Resistance, points 26
12

Alloy Composition

Carbon (C), % 0 to 0.025
0.050 to 0.1
Chromium (Cr), % 24 to 26
17 to 20
Copper (Cu), % 1.2 to 2.0
0 to 1.0
Iron (Fe), % 56.8 to 64.3
38.3 to 48.2
Lead (Pb), % 0
0 to 0.0050
Manganese (Mn), % 0 to 0.8
0 to 2.0
Molybdenum (Mo), % 3.0 to 4.0
0
Nickel (Ni), % 6.5 to 8.0
34 to 37
Nitrogen (N), % 0.23 to 0.33
0
Phosphorus (P), % 0 to 0.025
0 to 0.030
Silicon (Si), % 0 to 0.8
0.75 to 1.5
Sulfur (S), % 0 to 0.0020
0 to 0.030
Tin (Sn), % 0
0 to 0.025
Tungsten (W), % 0.8 to 1.2
0