MakeItFrom.com
Menu (ESC)

S40975 Stainless Steel vs. C90400 Bronze

S40975 stainless steel belongs to the iron alloys classification, while C90400 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is S40975 stainless steel and the bottom bar is C90400 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170
77
Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 22
24
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 75
41
Tensile Strength: Ultimate (UTS), MPa 460
310
Tensile Strength: Yield (Proof), MPa 310
180

Thermal Properties

Latent Heat of Fusion, J/g 270
190
Maximum Temperature: Mechanical, °C 710
170
Melting Completion (Liquidus), °C 1450
990
Melting Onset (Solidus), °C 1400
850
Specific Heat Capacity, J/kg-K 480
370
Thermal Conductivity, W/m-K 26
75
Thermal Expansion, µm/m-K 10
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
12
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
12

Otherwise Unclassified Properties

Base Metal Price, % relative 6.5
34
Density, g/cm3 7.8
8.7
Embodied Carbon, kg CO2/kg material 2.0
3.5
Embodied Energy, MJ/kg 28
56
Embodied Water, L/kg 95
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 93
65
Resilience: Unit (Modulus of Resilience), kJ/m3 250
150
Stiffness to Weight: Axial, points 14
7.0
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 17
10
Strength to Weight: Bending, points 17
12
Thermal Diffusivity, mm2/s 7.0
23
Thermal Shock Resistance, points 17
11

Alloy Composition

Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.020
Boron (B), % 0
0 to 0.1
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 10.5 to 11.7
0
Copper (Cu), % 0
86 to 89
Iron (Fe), % 84.4 to 89
0 to 0.4
Lead (Pb), % 0
0 to 0.090
Manganese (Mn), % 0 to 1.0
0 to 0.010
Nickel (Ni), % 0.5 to 1.0
0 to 1.0
Nitrogen (N), % 0 to 0.030
0
Phosphorus (P), % 0 to 0.040
0 to 0.050
Silicon (Si), % 0 to 1.0
0 to 0.0050
Sulfur (S), % 0 to 0.030
0.1 to 0.65
Tin (Sn), % 0
7.5 to 8.5
Titanium (Ti), % 0 to 0.75
0
Zinc (Zn), % 0
1.0 to 5.0
Zirconium (Zr), % 0
0 to 0.1
Residuals, % 0
0 to 0.7