MakeItFrom.com
Menu (ESC)

S40977 Stainless Steel vs. S21640 Stainless Steel

Both S40977 stainless steel and S21640 stainless steel are iron alloys. Both are furnished in the annealed condition. They have 82% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is S40977 stainless steel and the bottom bar is S21640 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 160
230
Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 21
46
Fatigue Strength, MPa 200
320
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 76
78
Shear Strength, MPa 320
520
Tensile Strength: Ultimate (UTS), MPa 510
740
Tensile Strength: Yield (Proof), MPa 310
350

Thermal Properties

Latent Heat of Fusion, J/g 270
290
Maximum Temperature: Corrosion, °C 390
490
Maximum Temperature: Mechanical, °C 720
940
Melting Completion (Liquidus), °C 1440
1430
Melting Onset (Solidus), °C 1400
1380
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 25
15
Thermal Expansion, µm/m-K 10
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 6.5
17
Density, g/cm3 7.8
7.7
Embodied Carbon, kg CO2/kg material 1.9
3.6
Embodied Energy, MJ/kg 27
51
Embodied Water, L/kg 97
150

Common Calculations

PREN (Pitting Resistance) 12
26
Resilience: Ultimate (Unit Rupture Work), MJ/m3 92
280
Resilience: Unit (Modulus of Resilience), kJ/m3 250
300
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 18
27
Strength to Weight: Bending, points 18
23
Thermal Diffusivity, mm2/s 6.7
4.0
Thermal Shock Resistance, points 18
16

Alloy Composition

Carbon (C), % 0 to 0.030
0 to 0.080
Chromium (Cr), % 10.5 to 12.5
17.5 to 19.5
Iron (Fe), % 83.9 to 89.2
63 to 74.3
Manganese (Mn), % 0 to 1.5
3.5 to 6.5
Molybdenum (Mo), % 0
0.5 to 2.0
Nickel (Ni), % 0.3 to 1.0
4.0 to 6.5
Niobium (Nb), % 0
0.1 to 1.0
Nitrogen (N), % 0 to 0.030
0.080 to 0.3
Phosphorus (P), % 0 to 0.040
0 to 0.060
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.015
0 to 0.030