MakeItFrom.com
Menu (ESC)

S42035 Stainless Steel vs. S21640 Stainless Steel

Both S42035 stainless steel and S21640 stainless steel are iron alloys. Both are furnished in the annealed condition. They have 87% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is S42035 stainless steel and the bottom bar is S21640 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 160
230
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 18
46
Fatigue Strength, MPa 260
320
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 77
78
Shear Strength, MPa 390
520
Tensile Strength: Ultimate (UTS), MPa 630
740
Tensile Strength: Yield (Proof), MPa 430
350

Thermal Properties

Latent Heat of Fusion, J/g 280
290
Maximum Temperature: Corrosion, °C 470
490
Maximum Temperature: Mechanical, °C 810
940
Melting Completion (Liquidus), °C 1450
1430
Melting Onset (Solidus), °C 1400
1380
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 27
15
Thermal Expansion, µm/m-K 10
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.7
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 3.2
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
17
Density, g/cm3 7.8
7.7
Embodied Carbon, kg CO2/kg material 2.4
3.6
Embodied Energy, MJ/kg 34
51
Embodied Water, L/kg 110
150

Common Calculations

PREN (Pitting Resistance) 17
26
Resilience: Ultimate (Unit Rupture Work), MJ/m3 100
280
Resilience: Unit (Modulus of Resilience), kJ/m3 460
300
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 22
27
Strength to Weight: Bending, points 21
23
Thermal Diffusivity, mm2/s 7.2
4.0
Thermal Shock Resistance, points 22
16

Alloy Composition

Carbon (C), % 0 to 0.080
0 to 0.080
Chromium (Cr), % 13.5 to 15.5
17.5 to 19.5
Iron (Fe), % 78.1 to 85
63 to 74.3
Manganese (Mn), % 0 to 1.0
3.5 to 6.5
Molybdenum (Mo), % 0.2 to 1.2
0.5 to 2.0
Nickel (Ni), % 1.0 to 2.5
4.0 to 6.5
Niobium (Nb), % 0
0.1 to 1.0
Nitrogen (N), % 0
0.080 to 0.3
Phosphorus (P), % 0 to 0.045
0 to 0.060
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.030
Titanium (Ti), % 0.3 to 0.5
0