MakeItFrom.com
Menu (ESC)

S42035 Stainless Steel vs. S44401 Stainless Steel

Both S42035 stainless steel and S44401 stainless steel are iron alloys. Both are furnished in the annealed condition. They have a moderately high 94% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is S42035 stainless steel and the bottom bar is S44401 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 18
21
Fatigue Strength, MPa 260
200
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 77
78
Shear Strength, MPa 390
300
Tensile Strength: Ultimate (UTS), MPa 630
480
Tensile Strength: Yield (Proof), MPa 430
300

Thermal Properties

Latent Heat of Fusion, J/g 280
280
Maximum Temperature: Corrosion, °C 470
510
Maximum Temperature: Mechanical, °C 810
930
Melting Completion (Liquidus), °C 1450
1460
Melting Onset (Solidus), °C 1400
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 27
22
Thermal Expansion, µm/m-K 10
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.7
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 3.2
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
12
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 2.4
2.9
Embodied Energy, MJ/kg 34
40
Embodied Water, L/kg 110
130

Common Calculations

PREN (Pitting Resistance) 17
26
Resilience: Ultimate (Unit Rupture Work), MJ/m3 100
90
Resilience: Unit (Modulus of Resilience), kJ/m3 460
230
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 22
17
Strength to Weight: Bending, points 21
18
Thermal Diffusivity, mm2/s 7.2
5.9
Thermal Shock Resistance, points 22
17

Alloy Composition

Carbon (C), % 0 to 0.080
0 to 0.025
Chromium (Cr), % 13.5 to 15.5
17.5 to 19.5
Iron (Fe), % 78.1 to 85
75.1 to 80.6
Manganese (Mn), % 0 to 1.0
0 to 1.0
Molybdenum (Mo), % 0.2 to 1.2
1.8 to 2.5
Nickel (Ni), % 1.0 to 2.5
0 to 1.0
Nitrogen (N), % 0
0 to 0.035
Phosphorus (P), % 0 to 0.045
0 to 0.040
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0 to 0.030
Titanium (Ti), % 0.3 to 0.5
0.2 to 0.8