MakeItFrom.com
Menu (ESC)

S44330 Stainless Steel vs. EN 1.4011 Stainless Steel

Both S44330 stainless steel and EN 1.4011 stainless steel are iron alloys. They have 90% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is S44330 stainless steel and the bottom bar is EN 1.4011 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 25
17
Fatigue Strength, MPa 160
310
Poisson's Ratio 0.27
0.28
Shear Modulus, GPa 78
76
Tensile Strength: Ultimate (UTS), MPa 440
700
Tensile Strength: Yield (Proof), MPa 230
510

Thermal Properties

Latent Heat of Fusion, J/g 290
270
Maximum Temperature: Corrosion, °C 560
390
Maximum Temperature: Mechanical, °C 990
750
Melting Completion (Liquidus), °C 1440
1450
Melting Onset (Solidus), °C 1390
1400
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 21
25
Thermal Expansion, µm/m-K 10
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.7
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 3.1
3.4

Otherwise Unclassified Properties

Base Metal Price, % relative 13
7.0
Density, g/cm3 7.7
7.8
Embodied Carbon, kg CO2/kg material 2.8
2.0
Embodied Energy, MJ/kg 40
28
Embodied Water, L/kg 140
100

Common Calculations

PREN (Pitting Resistance) 22
13
Resilience: Ultimate (Unit Rupture Work), MJ/m3 91
110
Resilience: Unit (Modulus of Resilience), kJ/m3 140
660
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 16
25
Strength to Weight: Bending, points 17
23
Thermal Diffusivity, mm2/s 5.7
6.7
Thermal Shock Resistance, points 16
24

Alloy Composition

Carbon (C), % 0 to 0.025
0 to 0.15
Chromium (Cr), % 20 to 23
11.5 to 13.5
Copper (Cu), % 0.3 to 0.8
0
Iron (Fe), % 72.5 to 79.7
82.8 to 88.5
Manganese (Mn), % 0 to 1.0
0 to 1.0
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0
0 to 1.0
Niobium (Nb), % 0 to 0.8
0
Nitrogen (N), % 0 to 0.025
0
Phosphorus (P), % 0 to 0.040
0 to 0.035
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.025
Titanium (Ti), % 0 to 0.8
0