MakeItFrom.com
Menu (ESC)

S44401 Stainless Steel vs. ASTM A182 Grade F6b

Both S44401 stainless steel and ASTM A182 grade F6b are iron alloys. Both are furnished in the annealed condition. They have a moderately high 92% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is S44401 stainless steel and the bottom bar is ASTM A182 grade F6b.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 21
18
Fatigue Strength, MPa 200
440
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 78
76
Shear Strength, MPa 300
530
Tensile Strength: Ultimate (UTS), MPa 480
850
Tensile Strength: Yield (Proof), MPa 300
710

Thermal Properties

Latent Heat of Fusion, J/g 280
280
Maximum Temperature: Corrosion, °C 510
390
Maximum Temperature: Mechanical, °C 930
750
Melting Completion (Liquidus), °C 1460
1450
Melting Onset (Solidus), °C 1420
1400
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 22
25
Thermal Expansion, µm/m-K 10
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
2.8
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
3.2

Otherwise Unclassified Properties

Base Metal Price, % relative 12
8.0
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 2.9
2.2
Embodied Energy, MJ/kg 40
30
Embodied Water, L/kg 130
100

Common Calculations

PREN (Pitting Resistance) 26
14
Resilience: Ultimate (Unit Rupture Work), MJ/m3 90
140
Resilience: Unit (Modulus of Resilience), kJ/m3 230
1280
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 17
30
Strength to Weight: Bending, points 18
26
Thermal Diffusivity, mm2/s 5.9
6.7
Thermal Shock Resistance, points 17
31

Alloy Composition

Carbon (C), % 0 to 0.025
0 to 0.15
Chromium (Cr), % 17.5 to 19.5
11.5 to 13.5
Copper (Cu), % 0
0 to 0.5
Iron (Fe), % 75.1 to 80.6
81.2 to 87.1
Manganese (Mn), % 0 to 1.0
0 to 1.0
Molybdenum (Mo), % 1.8 to 2.5
0.4 to 0.6
Nickel (Ni), % 0 to 1.0
1.0 to 2.0
Nitrogen (N), % 0 to 0.035
0
Phosphorus (P), % 0 to 0.040
0 to 0.020
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.020
Titanium (Ti), % 0.2 to 0.8
0