MakeItFrom.com
Menu (ESC)

S44401 Stainless Steel vs. ASTM Grade LC3 Steel

Both S44401 stainless steel and ASTM grade LC3 steel are iron alloys. They have 79% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is S44401 stainless steel and the bottom bar is ASTM grade LC3 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 21
27
Fatigue Strength, MPa 200
230
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 78
73
Tensile Strength: Ultimate (UTS), MPa 480
570
Tensile Strength: Yield (Proof), MPa 300
310

Thermal Properties

Latent Heat of Fusion, J/g 280
250
Maximum Temperature: Mechanical, °C 930
410
Melting Completion (Liquidus), °C 1460
1460
Melting Onset (Solidus), °C 1420
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 22
52
Thermal Expansion, µm/m-K 10
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
7.6
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
8.7

Otherwise Unclassified Properties

Base Metal Price, % relative 12
4.0
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 2.9
1.7
Embodied Energy, MJ/kg 40
23
Embodied Water, L/kg 130
52

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 90
130
Resilience: Unit (Modulus of Resilience), kJ/m3 230
260
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 17
20
Strength to Weight: Bending, points 18
19
Thermal Diffusivity, mm2/s 5.9
14
Thermal Shock Resistance, points 17
17

Alloy Composition

Carbon (C), % 0 to 0.025
0 to 0.15
Chromium (Cr), % 17.5 to 19.5
0
Iron (Fe), % 75.1 to 80.6
94.4 to 96.5
Manganese (Mn), % 0 to 1.0
0.5 to 0.8
Molybdenum (Mo), % 1.8 to 2.5
0
Nickel (Ni), % 0 to 1.0
3.0 to 4.0
Nitrogen (N), % 0 to 0.035
0
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0
0 to 0.6
Sulfur (S), % 0 to 0.030
0 to 0.045
Titanium (Ti), % 0.2 to 0.8
0