MakeItFrom.com
Menu (ESC)

S44401 Stainless Steel vs. EN 1.4507 Stainless Steel

Both S44401 stainless steel and EN 1.4507 stainless steel are iron alloys. They have 83% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is S44401 stainless steel and the bottom bar is EN 1.4507 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 21
25
Fatigue Strength, MPa 200
410
Poisson's Ratio 0.28
0.27
Shear Modulus, GPa 78
80
Shear Strength, MPa 300
530
Tensile Strength: Ultimate (UTS), MPa 480
840
Tensile Strength: Yield (Proof), MPa 300
590

Thermal Properties

Latent Heat of Fusion, J/g 280
300
Maximum Temperature: Corrosion, °C 510
450
Maximum Temperature: Mechanical, °C 930
1100
Melting Completion (Liquidus), °C 1460
1440
Melting Onset (Solidus), °C 1420
1390
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 22
15
Thermal Expansion, µm/m-K 10
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 12
21
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 2.9
4.0
Embodied Energy, MJ/kg 40
55
Embodied Water, L/kg 130
180

Common Calculations

PREN (Pitting Resistance) 26
41
Resilience: Ultimate (Unit Rupture Work), MJ/m3 90
190
Resilience: Unit (Modulus of Resilience), kJ/m3 230
850
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 17
30
Strength to Weight: Bending, points 18
25
Thermal Diffusivity, mm2/s 5.9
4.0
Thermal Shock Resistance, points 17
23

Alloy Composition

Carbon (C), % 0 to 0.025
0 to 0.030
Chromium (Cr), % 17.5 to 19.5
24 to 26
Copper (Cu), % 0
1.0 to 2.5
Iron (Fe), % 75.1 to 80.6
56.4 to 65.8
Manganese (Mn), % 0 to 1.0
0 to 2.0
Molybdenum (Mo), % 1.8 to 2.5
3.0 to 4.0
Nickel (Ni), % 0 to 1.0
6.0 to 8.0
Nitrogen (N), % 0 to 0.035
0.2 to 0.3
Phosphorus (P), % 0 to 0.040
0 to 0.035
Silicon (Si), % 0
0 to 0.7
Sulfur (S), % 0 to 0.030
0 to 0.015
Titanium (Ti), % 0.2 to 0.8
0