MakeItFrom.com
Menu (ESC)

S44401 Stainless Steel vs. EN 1.4659 Stainless Steel

Both S44401 stainless steel and EN 1.4659 stainless steel are iron alloys. They have 62% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is S44401 stainless steel and the bottom bar is EN 1.4659 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
210
Elongation at Break, % 21
49
Fatigue Strength, MPa 200
460
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 78
81
Shear Strength, MPa 300
640
Tensile Strength: Ultimate (UTS), MPa 480
900
Tensile Strength: Yield (Proof), MPa 300
480

Thermal Properties

Latent Heat of Fusion, J/g 280
300
Maximum Temperature: Corrosion, °C 510
440
Maximum Temperature: Mechanical, °C 930
1100
Melting Completion (Liquidus), °C 1460
1480
Melting Onset (Solidus), °C 1420
1430
Specific Heat Capacity, J/kg-K 470
460
Thermal Conductivity, W/m-K 22
12
Thermal Expansion, µm/m-K 10
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 12
37
Density, g/cm3 7.8
8.2
Embodied Carbon, kg CO2/kg material 2.9
6.5
Embodied Energy, MJ/kg 40
89
Embodied Water, L/kg 130
220

Common Calculations

PREN (Pitting Resistance) 26
54
Resilience: Ultimate (Unit Rupture Work), MJ/m3 90
370
Resilience: Unit (Modulus of Resilience), kJ/m3 230
550
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 17
31
Strength to Weight: Bending, points 18
25
Thermal Diffusivity, mm2/s 5.9
3.2
Thermal Shock Resistance, points 17
19

Alloy Composition

Carbon (C), % 0 to 0.025
0 to 0.020
Chromium (Cr), % 17.5 to 19.5
23 to 25
Copper (Cu), % 0
1.0 to 2.0
Iron (Fe), % 75.1 to 80.6
35.7 to 45.7
Manganese (Mn), % 0 to 1.0
2.0 to 4.0
Molybdenum (Mo), % 1.8 to 2.5
5.5 to 6.5
Nickel (Ni), % 0 to 1.0
21 to 23
Nitrogen (N), % 0 to 0.035
0.35 to 0.5
Phosphorus (P), % 0 to 0.040
0 to 0.030
Silicon (Si), % 0
0 to 0.7
Sulfur (S), % 0 to 0.030
0 to 0.010
Titanium (Ti), % 0.2 to 0.8
0
Tungsten (W), % 0
1.5 to 2.5