MakeItFrom.com
Menu (ESC)

S44401 Stainless Steel vs. C50100 Bronze

S44401 stainless steel belongs to the iron alloys classification, while C50100 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is S44401 stainless steel and the bottom bar is C50100 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 21
40
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 78
43
Shear Strength, MPa 300
180
Tensile Strength: Ultimate (UTS), MPa 480
270
Tensile Strength: Yield (Proof), MPa 300
82

Thermal Properties

Latent Heat of Fusion, J/g 280
210
Maximum Temperature: Mechanical, °C 930
200
Melting Completion (Liquidus), °C 1460
1080
Melting Onset (Solidus), °C 1420
1070
Specific Heat Capacity, J/kg-K 470
380
Thermal Conductivity, W/m-K 22
230
Thermal Expansion, µm/m-K 10
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
55
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
55

Otherwise Unclassified Properties

Base Metal Price, % relative 12
31
Density, g/cm3 7.8
8.9
Embodied Carbon, kg CO2/kg material 2.9
2.6
Embodied Energy, MJ/kg 40
42
Embodied Water, L/kg 130
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 90
82
Resilience: Unit (Modulus of Resilience), kJ/m3 230
29
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 17
8.3
Strength to Weight: Bending, points 18
10
Thermal Diffusivity, mm2/s 5.9
66
Thermal Shock Resistance, points 17
9.5

Alloy Composition

Carbon (C), % 0 to 0.025
0
Chromium (Cr), % 17.5 to 19.5
0
Copper (Cu), % 0
98.6 to 99.49
Iron (Fe), % 75.1 to 80.6
0 to 0.050
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 1.8 to 2.5
0
Nickel (Ni), % 0 to 1.0
0
Nitrogen (N), % 0 to 0.035
0
Phosphorus (P), % 0 to 0.040
0.010 to 0.050
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0.5 to 0.8
Titanium (Ti), % 0.2 to 0.8
0
Residuals, % 0
0 to 0.5