MakeItFrom.com
Menu (ESC)

S44401 Stainless Steel vs. C64700 Bronze

S44401 stainless steel belongs to the iron alloys classification, while C64700 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is S44401 stainless steel and the bottom bar is C64700 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 21
9.0
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 78
44
Shear Strength, MPa 300
390
Tensile Strength: Ultimate (UTS), MPa 480
660
Tensile Strength: Yield (Proof), MPa 300
560

Thermal Properties

Latent Heat of Fusion, J/g 280
220
Maximum Temperature: Mechanical, °C 930
200
Melting Completion (Liquidus), °C 1460
1090
Melting Onset (Solidus), °C 1420
1030
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 22
210
Thermal Expansion, µm/m-K 10
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
38
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
38

Otherwise Unclassified Properties

Base Metal Price, % relative 12
31
Density, g/cm3 7.8
8.9
Embodied Carbon, kg CO2/kg material 2.9
2.7
Embodied Energy, MJ/kg 40
43
Embodied Water, L/kg 130
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 90
57
Resilience: Unit (Modulus of Resilience), kJ/m3 230
1370
Stiffness to Weight: Axial, points 14
7.3
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 17
21
Strength to Weight: Bending, points 18
19
Thermal Diffusivity, mm2/s 5.9
59
Thermal Shock Resistance, points 17
24

Alloy Composition

Carbon (C), % 0 to 0.025
0
Chromium (Cr), % 17.5 to 19.5
0
Copper (Cu), % 0
95.8 to 98
Iron (Fe), % 75.1 to 80.6
0 to 0.1
Lead (Pb), % 0
0 to 0.1
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 1.8 to 2.5
0
Nickel (Ni), % 0 to 1.0
1.6 to 2.2
Nitrogen (N), % 0 to 0.035
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0
0.4 to 0.8
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0.2 to 0.8
0
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0
0 to 0.5