MakeItFrom.com
Menu (ESC)

S44401 Stainless Steel vs. C68400 Brass

S44401 stainless steel belongs to the iron alloys classification, while C68400 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is S44401 stainless steel and the bottom bar is C68400 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 21
18
Poisson's Ratio 0.28
0.31
Shear Modulus, GPa 78
41
Shear Strength, MPa 300
330
Tensile Strength: Ultimate (UTS), MPa 480
540
Tensile Strength: Yield (Proof), MPa 300
310

Thermal Properties

Latent Heat of Fusion, J/g 280
210
Maximum Temperature: Mechanical, °C 930
130
Melting Completion (Liquidus), °C 1460
840
Melting Onset (Solidus), °C 1420
820
Specific Heat Capacity, J/kg-K 470
400
Thermal Conductivity, W/m-K 22
66
Thermal Expansion, µm/m-K 10
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
87
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
99

Otherwise Unclassified Properties

Base Metal Price, % relative 12
23
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 2.9
2.7
Embodied Energy, MJ/kg 40
47
Embodied Water, L/kg 130
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 90
81
Resilience: Unit (Modulus of Resilience), kJ/m3 230
460
Stiffness to Weight: Axial, points 14
7.5
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 17
19
Strength to Weight: Bending, points 18
19
Thermal Diffusivity, mm2/s 5.9
21
Thermal Shock Resistance, points 17
18

Alloy Composition

Aluminum (Al), % 0
0 to 0.5
Boron (B), % 0
0.0010 to 0.030
Carbon (C), % 0 to 0.025
0
Chromium (Cr), % 17.5 to 19.5
0
Copper (Cu), % 0
59 to 64
Iron (Fe), % 75.1 to 80.6
0 to 1.0
Lead (Pb), % 0
0 to 0.090
Manganese (Mn), % 0 to 1.0
0.2 to 1.5
Molybdenum (Mo), % 1.8 to 2.5
0
Nickel (Ni), % 0 to 1.0
0 to 0.5
Nitrogen (N), % 0 to 0.035
0
Phosphorus (P), % 0 to 0.040
0.030 to 0.3
Silicon (Si), % 0
1.5 to 2.5
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.5
Titanium (Ti), % 0.2 to 0.8
0
Zinc (Zn), % 0
28.6 to 39.3
Residuals, % 0
0 to 0.5