MakeItFrom.com
Menu (ESC)

S44401 Stainless Steel vs. C87400 Brass

S44401 stainless steel belongs to the iron alloys classification, while C87400 brass belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is S44401 stainless steel and the bottom bar is C87400 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 21
21
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 78
41
Tensile Strength: Ultimate (UTS), MPa 480
390
Tensile Strength: Yield (Proof), MPa 300
160

Thermal Properties

Latent Heat of Fusion, J/g 280
250
Maximum Temperature: Mechanical, °C 930
170
Melting Completion (Liquidus), °C 1460
920
Melting Onset (Solidus), °C 1420
820
Specific Heat Capacity, J/kg-K 470
400
Thermal Conductivity, W/m-K 22
28
Thermal Expansion, µm/m-K 10
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
6.7
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
7.2

Otherwise Unclassified Properties

Base Metal Price, % relative 12
27
Density, g/cm3 7.8
8.3
Embodied Carbon, kg CO2/kg material 2.9
2.7
Embodied Energy, MJ/kg 40
44
Embodied Water, L/kg 130
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 90
65
Resilience: Unit (Modulus of Resilience), kJ/m3 230
120
Stiffness to Weight: Axial, points 14
7.4
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 17
13
Strength to Weight: Bending, points 18
14
Thermal Diffusivity, mm2/s 5.9
8.3
Thermal Shock Resistance, points 17
14

Alloy Composition

Aluminum (Al), % 0
0 to 0.8
Carbon (C), % 0 to 0.025
0
Chromium (Cr), % 17.5 to 19.5
0
Copper (Cu), % 0
79 to 85.5
Iron (Fe), % 75.1 to 80.6
0
Lead (Pb), % 0
0 to 1.0
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 1.8 to 2.5
0
Nickel (Ni), % 0 to 1.0
0
Nitrogen (N), % 0 to 0.035
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0
2.5 to 4.0
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0.2 to 0.8
0
Zinc (Zn), % 0
12 to 16
Residuals, % 0
0 to 0.8