MakeItFrom.com
Menu (ESC)

S44401 Stainless Steel vs. C87800 Brass

S44401 stainless steel belongs to the iron alloys classification, while C87800 brass belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is S44401 stainless steel and the bottom bar is C87800 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 21
25
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 78
42
Tensile Strength: Ultimate (UTS), MPa 480
590
Tensile Strength: Yield (Proof), MPa 300
350

Thermal Properties

Latent Heat of Fusion, J/g 280
260
Maximum Temperature: Mechanical, °C 930
170
Melting Completion (Liquidus), °C 1460
920
Melting Onset (Solidus), °C 1420
820
Specific Heat Capacity, J/kg-K 470
410
Thermal Conductivity, W/m-K 22
28
Thermal Expansion, µm/m-K 10
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
6.7
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
7.3

Otherwise Unclassified Properties

Base Metal Price, % relative 12
27
Density, g/cm3 7.8
8.3
Embodied Carbon, kg CO2/kg material 2.9
2.7
Embodied Energy, MJ/kg 40
44
Embodied Water, L/kg 130
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 90
130
Resilience: Unit (Modulus of Resilience), kJ/m3 230
540
Stiffness to Weight: Axial, points 14
7.4
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 17
20
Strength to Weight: Bending, points 18
19
Thermal Diffusivity, mm2/s 5.9
8.3
Thermal Shock Resistance, points 17
21

Alloy Composition

Aluminum (Al), % 0
0 to 0.15
Antimony (Sb), % 0
0 to 0.050
Arsenic (As), % 0
0 to 0.050
Carbon (C), % 0 to 0.025
0
Chromium (Cr), % 17.5 to 19.5
0
Copper (Cu), % 0
80 to 84.2
Iron (Fe), % 75.1 to 80.6
0 to 0.15
Lead (Pb), % 0
0 to 0.15
Magnesium (Mg), % 0
0 to 0.010
Manganese (Mn), % 0 to 1.0
0 to 0.15
Molybdenum (Mo), % 1.8 to 2.5
0
Nickel (Ni), % 0 to 1.0
0 to 0.2
Nitrogen (N), % 0 to 0.035
0
Phosphorus (P), % 0 to 0.040
0 to 0.010
Silicon (Si), % 0
3.8 to 4.2
Sulfur (S), % 0 to 0.030
0 to 0.050
Tin (Sn), % 0
0 to 0.25
Titanium (Ti), % 0.2 to 0.8
0
Zinc (Zn), % 0
12 to 16
Residuals, % 0
0 to 0.5