MakeItFrom.com
Menu (ESC)

S44401 Stainless Steel vs. C96800 Copper

S44401 stainless steel belongs to the iron alloys classification, while C96800 copper belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is S44401 stainless steel and the bottom bar is C96800 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 21
3.4
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 78
46
Tensile Strength: Ultimate (UTS), MPa 480
1010
Tensile Strength: Yield (Proof), MPa 300
860

Thermal Properties

Latent Heat of Fusion, J/g 280
220
Maximum Temperature: Mechanical, °C 930
220
Melting Completion (Liquidus), °C 1460
1120
Melting Onset (Solidus), °C 1420
1060
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 22
52
Thermal Expansion, µm/m-K 10
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
10
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
10

Otherwise Unclassified Properties

Base Metal Price, % relative 12
34
Density, g/cm3 7.8
8.9
Embodied Carbon, kg CO2/kg material 2.9
3.4
Embodied Energy, MJ/kg 40
52
Embodied Water, L/kg 130
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 90
33
Resilience: Unit (Modulus of Resilience), kJ/m3 230
3000
Stiffness to Weight: Axial, points 14
7.6
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 17
32
Strength to Weight: Bending, points 18
25
Thermal Diffusivity, mm2/s 5.9
15
Thermal Shock Resistance, points 17
35

Alloy Composition

Aluminum (Al), % 0
0 to 0.1
Antimony (Sb), % 0
0 to 0.020
Carbon (C), % 0 to 0.025
0
Chromium (Cr), % 17.5 to 19.5
0
Copper (Cu), % 0
87.1 to 90.5
Iron (Fe), % 75.1 to 80.6
0 to 0.5
Lead (Pb), % 0
0 to 0.0050
Manganese (Mn), % 0 to 1.0
0.050 to 0.3
Molybdenum (Mo), % 1.8 to 2.5
0
Nickel (Ni), % 0 to 1.0
9.5 to 10.5
Nitrogen (N), % 0 to 0.035
0
Phosphorus (P), % 0 to 0.040
0 to 0.0050
Sulfur (S), % 0 to 0.030
0 to 0.0025
Titanium (Ti), % 0.2 to 0.8
0
Zinc (Zn), % 0
0 to 1.0
Residuals, % 0
0 to 0.5