MakeItFrom.com
Menu (ESC)

S44401 Stainless Steel vs. S32053 Stainless Steel

Both S44401 stainless steel and S32053 stainless steel are iron alloys. Both are furnished in the annealed condition. They have 67% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is S44401 stainless steel and the bottom bar is S32053 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
210
Elongation at Break, % 21
46
Fatigue Strength, MPa 200
310
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 78
80
Shear Strength, MPa 300
510
Tensile Strength: Ultimate (UTS), MPa 480
730
Tensile Strength: Yield (Proof), MPa 300
330

Thermal Properties

Latent Heat of Fusion, J/g 280
310
Maximum Temperature: Corrosion, °C 510
440
Maximum Temperature: Mechanical, °C 930
1100
Melting Completion (Liquidus), °C 1460
1450
Melting Onset (Solidus), °C 1420
1400
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 22
13
Thermal Expansion, µm/m-K 10
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
1.8
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 12
33
Density, g/cm3 7.8
8.1
Embodied Carbon, kg CO2/kg material 2.9
6.1
Embodied Energy, MJ/kg 40
83
Embodied Water, L/kg 130
210

Common Calculations

PREN (Pitting Resistance) 26
44
Resilience: Ultimate (Unit Rupture Work), MJ/m3 90
270
Resilience: Unit (Modulus of Resilience), kJ/m3 230
270
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 17
25
Strength to Weight: Bending, points 18
22
Thermal Diffusivity, mm2/s 5.9
3.3
Thermal Shock Resistance, points 17
16

Alloy Composition

Carbon (C), % 0 to 0.025
0 to 0.030
Chromium (Cr), % 17.5 to 19.5
22 to 24
Iron (Fe), % 75.1 to 80.6
41.7 to 48.8
Manganese (Mn), % 0 to 1.0
0 to 1.0
Molybdenum (Mo), % 1.8 to 2.5
5.0 to 6.0
Nickel (Ni), % 0 to 1.0
24 to 26
Nitrogen (N), % 0 to 0.035
0.17 to 0.22
Phosphorus (P), % 0 to 0.040
0 to 0.030
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.010
Titanium (Ti), % 0.2 to 0.8
0