MakeItFrom.com
Menu (ESC)

S44401 Stainless Steel vs. S38100 Stainless Steel

Both S44401 stainless steel and S38100 stainless steel are iron alloys. Both are furnished in the annealed condition. They have 80% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is S44401 stainless steel and the bottom bar is S38100 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 21
45
Fatigue Strength, MPa 200
210
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 78
76
Shear Strength, MPa 300
400
Tensile Strength: Ultimate (UTS), MPa 480
580
Tensile Strength: Yield (Proof), MPa 300
230

Thermal Properties

Latent Heat of Fusion, J/g 280
320
Maximum Temperature: Corrosion, °C 510
410
Maximum Temperature: Mechanical, °C 930
970
Melting Completion (Liquidus), °C 1460
1400
Melting Onset (Solidus), °C 1420
1350
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 22
15
Thermal Expansion, µm/m-K 10
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 12
20
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 2.9
3.8
Embodied Energy, MJ/kg 40
54
Embodied Water, L/kg 130
160

Common Calculations

PREN (Pitting Resistance) 26
18
Resilience: Ultimate (Unit Rupture Work), MJ/m3 90
210
Resilience: Unit (Modulus of Resilience), kJ/m3 230
140
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 17
21
Strength to Weight: Bending, points 18
20
Thermal Diffusivity, mm2/s 5.9
4.0
Thermal Shock Resistance, points 17
13

Alloy Composition

Carbon (C), % 0 to 0.025
0 to 0.080
Chromium (Cr), % 17.5 to 19.5
17 to 19
Iron (Fe), % 75.1 to 80.6
57.9 to 64
Manganese (Mn), % 0 to 1.0
0 to 2.0
Molybdenum (Mo), % 1.8 to 2.5
0
Nickel (Ni), % 0 to 1.0
17.5 to 18.5
Nitrogen (N), % 0 to 0.035
0
Phosphorus (P), % 0 to 0.040
0 to 0.030
Silicon (Si), % 0
1.5 to 2.5
Sulfur (S), % 0 to 0.030
0 to 0.030
Titanium (Ti), % 0.2 to 0.8
0