MakeItFrom.com
Menu (ESC)

S44535 Stainless Steel vs. EN 1.4594 Stainless Steel

Both S44535 stainless steel and EN 1.4594 stainless steel are iron alloys. They have a moderately high 91% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is S44535 stainless steel and the bottom bar is EN 1.4594 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 28
11 to 17
Fatigue Strength, MPa 210
490 to 620
Poisson's Ratio 0.27
0.28
Shear Modulus, GPa 78
76
Shear Strength, MPa 290
620 to 700
Tensile Strength: Ultimate (UTS), MPa 450
1020 to 1170
Tensile Strength: Yield (Proof), MPa 290
810 to 1140

Thermal Properties

Latent Heat of Fusion, J/g 290
280
Maximum Temperature: Corrosion, °C 450
450
Maximum Temperature: Mechanical, °C 1000
820
Melting Completion (Liquidus), °C 1430
1450
Melting Onset (Solidus), °C 1390
1410
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 21
16
Thermal Expansion, µm/m-K 11
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.6
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 3.1
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 11
15
Density, g/cm3 7.7
7.9
Embodied Carbon, kg CO2/kg material 2.4
3.2
Embodied Energy, MJ/kg 34
45
Embodied Water, L/kg 140
130

Common Calculations

PREN (Pitting Resistance) 22
19
Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
110 to 190
Resilience: Unit (Modulus of Resilience), kJ/m3 200
1660 to 3320
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 16
36 to 41
Strength to Weight: Bending, points 17
29 to 31
Thermal Diffusivity, mm2/s 5.6
4.4
Thermal Shock Resistance, points 15
34 to 39

Alloy Composition

Aluminum (Al), % 0 to 0.5
0
Carbon (C), % 0 to 0.030
0 to 0.070
Chromium (Cr), % 20 to 24
13 to 15
Copper (Cu), % 0 to 0.5
1.2 to 2.0
Iron (Fe), % 73.2 to 79.6
72.6 to 79.5
Lanthanum (La), % 0.040 to 0.2
0
Manganese (Mn), % 0.3 to 0.8
0 to 1.0
Molybdenum (Mo), % 0
1.2 to 2.0
Nickel (Ni), % 0
5.0 to 6.0
Niobium (Nb), % 0
0.15 to 0.6
Phosphorus (P), % 0 to 0.050
0 to 0.040
Silicon (Si), % 0 to 0.5
0 to 0.7
Sulfur (S), % 0 to 0.020
0 to 0.015
Titanium (Ti), % 0.030 to 0.2
0