MakeItFrom.com
Menu (ESC)

S44536 Stainless Steel vs. 206.0 Aluminum

S44536 stainless steel belongs to the iron alloys classification, while 206.0 aluminum belongs to the aluminum alloys. There are 31 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is S44536 stainless steel and the bottom bar is 206.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170
95 to 110
Elastic (Young's, Tensile) Modulus, GPa 200
71
Elongation at Break, % 22
8.4 to 12
Fatigue Strength, MPa 190
88 to 210
Poisson's Ratio 0.27
0.33
Shear Modulus, GPa 78
27
Shear Strength, MPa 290
260
Tensile Strength: Ultimate (UTS), MPa 460
330 to 440
Tensile Strength: Yield (Proof), MPa 280
190 to 350

Thermal Properties

Latent Heat of Fusion, J/g 290
390
Maximum Temperature: Mechanical, °C 990
170
Melting Completion (Liquidus), °C 1440
650
Melting Onset (Solidus), °C 1390
570
Specific Heat Capacity, J/kg-K 480
880
Thermal Conductivity, W/m-K 21
120
Thermal Expansion, µm/m-K 11
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.6
33
Electrical Conductivity: Equal Weight (Specific), % IACS 3.0
99

Otherwise Unclassified Properties

Base Metal Price, % relative 13
11
Density, g/cm3 7.7
3.0
Embodied Carbon, kg CO2/kg material 2.8
8.0
Embodied Energy, MJ/kg 41
150
Embodied Water, L/kg 140
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 89
24 to 49
Resilience: Unit (Modulus of Resilience), kJ/m3 200
270 to 840
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
46
Strength to Weight: Axial, points 17
30 to 40
Strength to Weight: Bending, points 17
35 to 42
Thermal Diffusivity, mm2/s 5.6
46
Thermal Shock Resistance, points 16
17 to 23

Alloy Composition

Aluminum (Al), % 0
93.3 to 95.3
Carbon (C), % 0 to 0.015
0
Chromium (Cr), % 20 to 23
0
Copper (Cu), % 0
4.2 to 5.0
Iron (Fe), % 72.8 to 80
0 to 0.15
Magnesium (Mg), % 0
0.15 to 0.35
Manganese (Mn), % 0 to 1.0
0.2 to 0.5
Nickel (Ni), % 0 to 0.5
0 to 0.050
Niobium (Nb), % 0.050 to 0.8
0
Nitrogen (N), % 0 to 0.015
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0 to 0.1
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.050
Titanium (Ti), % 0 to 0.8
0.15 to 0.3
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15