MakeItFrom.com
Menu (ESC)

S44536 Stainless Steel vs. ACI-ASTM CF8 Steel

Both S44536 stainless steel and ACI-ASTM CF8 steel are iron alloys. They have 90% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is S44536 stainless steel and the bottom bar is ACI-ASTM CF8 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170
140
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 22
55
Fatigue Strength, MPa 190
260
Poisson's Ratio 0.27
0.28
Shear Modulus, GPa 78
77
Tensile Strength: Ultimate (UTS), MPa 460
540
Tensile Strength: Yield (Proof), MPa 280
260

Thermal Properties

Latent Heat of Fusion, J/g 290
300
Maximum Temperature: Corrosion, °C 560
420
Maximum Temperature: Mechanical, °C 990
980
Melting Completion (Liquidus), °C 1440
1420
Melting Onset (Solidus), °C 1390
1430
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 21
16
Thermal Expansion, µm/m-K 11
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.6
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 3.0
2.3

Otherwise Unclassified Properties

Base Metal Price, % relative 13
16
Density, g/cm3 7.7
7.8
Embodied Carbon, kg CO2/kg material 2.8
3.1
Embodied Energy, MJ/kg 41
44
Embodied Water, L/kg 140
150

Common Calculations

PREN (Pitting Resistance) 22
20
Resilience: Ultimate (Unit Rupture Work), MJ/m3 89
240
Resilience: Unit (Modulus of Resilience), kJ/m3 200
160
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 17
19
Strength to Weight: Bending, points 17
19
Thermal Diffusivity, mm2/s 5.6
4.3
Thermal Shock Resistance, points 16
13

Alloy Composition

Carbon (C), % 0 to 0.015
0 to 0.080
Chromium (Cr), % 20 to 23
18 to 21
Iron (Fe), % 72.8 to 80
63.8 to 74
Manganese (Mn), % 0 to 1.0
0 to 1.5
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0 to 0.5
8.0 to 11
Niobium (Nb), % 0.050 to 0.8
0
Nitrogen (N), % 0 to 0.015
0
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0 to 1.0
0 to 2.0
Sulfur (S), % 0 to 0.030
0 to 0.040
Titanium (Ti), % 0 to 0.8
0