MakeItFrom.com
Menu (ESC)

S44536 Stainless Steel vs. S32506 Stainless Steel

Both S44536 stainless steel and S32506 stainless steel are iron alloys. Both are furnished in the annealed condition. They have 87% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is S44536 stainless steel and the bottom bar is S32506 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170
270
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 22
21
Fatigue Strength, MPa 190
330
Poisson's Ratio 0.27
0.27
Shear Modulus, GPa 78
81
Shear Strength, MPa 290
440
Tensile Strength: Ultimate (UTS), MPa 460
710
Tensile Strength: Yield (Proof), MPa 280
500

Thermal Properties

Latent Heat of Fusion, J/g 290
300
Maximum Temperature: Corrosion, °C 560
450
Maximum Temperature: Mechanical, °C 990
1100
Melting Completion (Liquidus), °C 1440
1450
Melting Onset (Solidus), °C 1390
1400
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 21
16
Thermal Expansion, µm/m-K 11
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.6
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 3.0
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 13
20
Density, g/cm3 7.7
7.8
Embodied Carbon, kg CO2/kg material 2.8
3.9
Embodied Energy, MJ/kg 41
54
Embodied Water, L/kg 140
180

Common Calculations

PREN (Pitting Resistance) 22
38
Resilience: Ultimate (Unit Rupture Work), MJ/m3 89
130
Resilience: Unit (Modulus of Resilience), kJ/m3 200
620
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 17
25
Strength to Weight: Bending, points 17
23
Thermal Diffusivity, mm2/s 5.6
4.3
Thermal Shock Resistance, points 16
19

Alloy Composition

Carbon (C), % 0 to 0.015
0 to 0.030
Chromium (Cr), % 20 to 23
24 to 26
Iron (Fe), % 72.8 to 80
60.8 to 67.4
Manganese (Mn), % 0 to 1.0
0 to 1.0
Molybdenum (Mo), % 0
3.0 to 3.5
Nickel (Ni), % 0 to 0.5
5.5 to 7.2
Niobium (Nb), % 0.050 to 0.8
0
Nitrogen (N), % 0 to 0.015
0.080 to 0.2
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0 to 1.0
0 to 0.9
Sulfur (S), % 0 to 0.030
0 to 0.015
Titanium (Ti), % 0 to 0.8
0
Tungsten (W), % 0
0.050 to 0.3