MakeItFrom.com
Menu (ESC)

S44660 Stainless Steel vs. C11400 Copper

S44660 stainless steel belongs to the iron alloys classification, while C11400 copper belongs to the copper alloys. There are 30 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is S44660 stainless steel and the bottom bar is C11400 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
120
Elongation at Break, % 20
2.8 to 51
Poisson's Ratio 0.27
0.34
Rockwell B Hardness 88
10 to 62
Shear Modulus, GPa 81
43
Shear Strength, MPa 410
150 to 210
Tensile Strength: Ultimate (UTS), MPa 660
220 to 400
Tensile Strength: Yield (Proof), MPa 510
75 to 400

Thermal Properties

Latent Heat of Fusion, J/g 300
210
Maximum Temperature: Mechanical, °C 1100
200
Melting Completion (Liquidus), °C 1460
1080
Melting Onset (Solidus), °C 1410
1030
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 17
390
Thermal Expansion, µm/m-K 11
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.5
100
Electrical Conductivity: Equal Weight (Specific), % IACS 2.9
100

Otherwise Unclassified Properties

Base Metal Price, % relative 21
32
Density, g/cm3 7.7
9.0
Embodied Carbon, kg CO2/kg material 4.3
2.6
Embodied Energy, MJ/kg 61
42
Embodied Water, L/kg 180
350

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
11 to 90
Resilience: Unit (Modulus of Resilience), kJ/m3 640
24 to 680
Stiffness to Weight: Axial, points 15
7.2
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 24
6.8 to 12
Strength to Weight: Bending, points 22
9.1 to 14
Thermal Diffusivity, mm2/s 4.5
110
Thermal Shock Resistance, points 21
7.8 to 14

Alloy Composition

Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 25 to 28
0
Copper (Cu), % 0
99.84 to 99.966
Iron (Fe), % 60.4 to 71
0
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 3.0 to 4.0
0
Nickel (Ni), % 1.0 to 3.5
0
Niobium (Nb), % 0.2 to 1.0
0
Nitrogen (N), % 0 to 0.040
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0
Silver (Ag), % 0
0.034 to 0.060
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0.2 to 1.0
0
Residuals, % 0
0 to 0.1