MakeItFrom.com
Menu (ESC)

S44800 Stainless Steel vs. Grade 9 Titanium

S44800 stainless steel belongs to the iron alloys classification, while grade 9 titanium belongs to the titanium alloys. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is S44800 stainless steel and the bottom bar is grade 9 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
110
Elongation at Break, % 23
11 to 17
Fatigue Strength, MPa 300
330 to 480
Poisson's Ratio 0.27
0.32
Reduction in Area, % 45
28
Shear Modulus, GPa 82
40
Shear Strength, MPa 370
430 to 580
Tensile Strength: Ultimate (UTS), MPa 590
700 to 960
Tensile Strength: Yield (Proof), MPa 450
540 to 830

Thermal Properties

Latent Heat of Fusion, J/g 300
410
Maximum Temperature: Mechanical, °C 1100
330
Melting Completion (Liquidus), °C 1460
1640
Melting Onset (Solidus), °C 1410
1590
Specific Heat Capacity, J/kg-K 480
550
Thermal Conductivity, W/m-K 17
8.1
Thermal Expansion, µm/m-K 11
9.1

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.6
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 3.0
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 19
37
Density, g/cm3 7.8
4.5
Embodied Carbon, kg CO2/kg material 3.8
36
Embodied Energy, MJ/kg 52
580
Embodied Water, L/kg 190
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
89 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 480
1380 to 3220
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 25
35
Strength to Weight: Axial, points 21
43 to 60
Strength to Weight: Bending, points 20
39 to 48
Thermal Diffusivity, mm2/s 4.6
3.3
Thermal Shock Resistance, points 19
52 to 71

Alloy Composition

Aluminum (Al), % 0
2.5 to 3.5
Carbon (C), % 0 to 0.010
0 to 0.080
Chromium (Cr), % 28 to 30
0
Copper (Cu), % 0 to 0.15
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 62.6 to 66.5
0 to 0.25
Manganese (Mn), % 0 to 0.3
0
Molybdenum (Mo), % 3.5 to 4.2
0
Nickel (Ni), % 2.0 to 2.5
0
Nitrogen (N), % 0 to 0.020
0 to 0.030
Oxygen (O), % 0
0 to 0.15
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 0.2
0
Sulfur (S), % 0 to 0.020
0
Titanium (Ti), % 0
92.6 to 95.5
Vanadium (V), % 0
2.0 to 3.0
Residuals, % 0
0 to 0.4