MakeItFrom.com
Menu (ESC)

S46910 Stainless Steel vs. 6182 Aluminum

S46910 stainless steel belongs to the iron alloys classification, while 6182 aluminum belongs to the aluminum alloys. There are 26 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is S46910 stainless steel and the bottom bar is 6182 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
70
Elongation at Break, % 2.2 to 11
6.8 to 13
Fatigue Strength, MPa 250 to 1020
63 to 99
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
26
Shear Strength, MPa 410 to 1410
140 to 190
Tensile Strength: Ultimate (UTS), MPa 680 to 2470
230 to 320
Tensile Strength: Yield (Proof), MPa 450 to 2290
130 to 270

Thermal Properties

Latent Heat of Fusion, J/g 280
410
Maximum Temperature: Mechanical, °C 810
190
Melting Completion (Liquidus), °C 1460
640
Melting Onset (Solidus), °C 1420
600
Specific Heat Capacity, J/kg-K 470
900
Thermal Expansion, µm/m-K 11
23

Otherwise Unclassified Properties

Base Metal Price, % relative 18
9.5
Density, g/cm3 7.9
2.7
Embodied Carbon, kg CO2/kg material 4.1
8.4
Embodied Energy, MJ/kg 55
150
Embodied Water, L/kg 140
1170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 48 to 130
21 to 26
Resilience: Unit (Modulus of Resilience), kJ/m3 510 to 4780
110 to 520
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
50
Strength to Weight: Axial, points 24 to 86
23 to 32
Strength to Weight: Bending, points 22 to 51
30 to 38
Thermal Shock Resistance, points 23 to 84
10 to 14

Alloy Composition

Aluminum (Al), % 0.15 to 0.5
95 to 97.9
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 11 to 13
0 to 0.25
Copper (Cu), % 1.5 to 3.5
0 to 0.1
Iron (Fe), % 65 to 76
0 to 0.5
Magnesium (Mg), % 0
0.7 to 1.2
Manganese (Mn), % 0 to 1.0
0.5 to 1.0
Molybdenum (Mo), % 3.0 to 5.0
0
Nickel (Ni), % 8.0 to 10
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 0.7
0.9 to 1.3
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0.5 to 1.2
0 to 0.1
Zinc (Zn), % 0
0 to 0.2
Zirconium (Zr), % 0
0.050 to 0.2
Residuals, % 0
0 to 0.15

Comparable Variants