MakeItFrom.com
Menu (ESC)

S46910 Stainless Steel vs. AWS E349

Both S46910 stainless steel and AWS E349 are iron alloys. They have 89% of their average alloy composition in common. There are 21 material properties with values for both materials. Properties with values for just one material (13, in this case) are not shown.

For each property being compared, the top bar is S46910 stainless steel and the bottom bar is AWS E349.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 2.2 to 11
29
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 76
78
Tensile Strength: Ultimate (UTS), MPa 680 to 2470
770

Thermal Properties

Latent Heat of Fusion, J/g 280
290
Melting Completion (Liquidus), °C 1460
1470
Melting Onset (Solidus), °C 1420
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Expansion, µm/m-K 11
14

Otherwise Unclassified Properties

Base Metal Price, % relative 18
25
Density, g/cm3 7.9
7.9
Embodied Carbon, kg CO2/kg material 4.1
4.9
Embodied Energy, MJ/kg 55
72
Embodied Water, L/kg 140
150

Common Calculations

PREN (Pitting Resistance) 25
24
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 24 to 86
27
Strength to Weight: Bending, points 22 to 51
24
Thermal Shock Resistance, points 23 to 84
20

Alloy Composition

Aluminum (Al), % 0.15 to 0.5
0
Carbon (C), % 0 to 0.030
0 to 0.13
Chromium (Cr), % 11 to 13
18 to 21
Copper (Cu), % 1.5 to 3.5
0 to 0.75
Iron (Fe), % 65 to 76
60.5 to 71.1
Manganese (Mn), % 0 to 1.0
0.5 to 2.5
Molybdenum (Mo), % 3.0 to 5.0
0.35 to 0.65
Nickel (Ni), % 8.0 to 10
8.0 to 10
Niobium (Nb), % 0
0.75 to 1.2
Phosphorus (P), % 0 to 0.030
0 to 0.040
Silicon (Si), % 0 to 0.7
0 to 1.0
Sulfur (S), % 0 to 0.015
0 to 0.030
Titanium (Ti), % 0.5 to 1.2
0 to 0.15
Tungsten (W), % 0
1.3 to 1.8
Vanadium (V), % 0
0.1 to 0.3