MakeItFrom.com
Menu (ESC)

S46910 Stainless Steel vs. C19200 Copper

S46910 stainless steel belongs to the iron alloys classification, while C19200 copper belongs to the copper alloys. There are 25 material properties with values for both materials. Properties with values for just one material (10, in this case) are not shown.

For each property being compared, the top bar is S46910 stainless steel and the bottom bar is C19200 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 2.2 to 11
2.0 to 35
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 76
44
Shear Strength, MPa 410 to 1410
190 to 300
Tensile Strength: Ultimate (UTS), MPa 680 to 2470
280 to 530
Tensile Strength: Yield (Proof), MPa 450 to 2290
98 to 510

Thermal Properties

Latent Heat of Fusion, J/g 280
210
Maximum Temperature: Mechanical, °C 810
200
Melting Completion (Liquidus), °C 1460
1080
Melting Onset (Solidus), °C 1420
1080
Specific Heat Capacity, J/kg-K 470
390
Thermal Expansion, µm/m-K 11
17

Otherwise Unclassified Properties

Base Metal Price, % relative 18
30
Density, g/cm3 7.9
8.9
Embodied Carbon, kg CO2/kg material 4.1
2.6
Embodied Energy, MJ/kg 55
41
Embodied Water, L/kg 140
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 48 to 130
10 to 98
Resilience: Unit (Modulus of Resilience), kJ/m3 510 to 4780
42 to 1120
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 24 to 86
8.8 to 17
Strength to Weight: Bending, points 22 to 51
11 to 16
Thermal Shock Resistance, points 23 to 84
10 to 19

Alloy Composition

Aluminum (Al), % 0.15 to 0.5
0
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 11 to 13
0
Copper (Cu), % 1.5 to 3.5
98.5 to 99.19
Iron (Fe), % 65 to 76
0.8 to 1.2
Lead (Pb), % 0
0 to 0.030
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 3.0 to 5.0
0
Nickel (Ni), % 8.0 to 10
0
Phosphorus (P), % 0 to 0.030
0.010 to 0.040
Silicon (Si), % 0 to 0.7
0
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0.5 to 1.2
0
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.2

Comparable Variants