MakeItFrom.com
Menu (ESC)

S81921 Stainless Steel vs. EN 1.8881 Steel

Both S81921 stainless steel and EN 1.8881 steel are iron alloys. They have 75% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is S81921 stainless steel and the bottom bar is EN 1.8881 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 260
250
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 29
16
Fatigue Strength, MPa 370
460
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 79
73
Shear Strength, MPa 460
510
Tensile Strength: Ultimate (UTS), MPa 710
830
Tensile Strength: Yield (Proof), MPa 500
710

Thermal Properties

Latent Heat of Fusion, J/g 290
260
Maximum Temperature: Mechanical, °C 990
420
Melting Completion (Liquidus), °C 1430
1460
Melting Onset (Solidus), °C 1390
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 15
40
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
8.1
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
9.3

Otherwise Unclassified Properties

Base Metal Price, % relative 14
3.7
Density, g/cm3 7.7
7.8
Embodied Carbon, kg CO2/kg material 2.9
1.9
Embodied Energy, MJ/kg 41
26
Embodied Water, L/kg 150
54

Common Calculations

PREN (Pitting Resistance) 28
2.0
Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
120
Resilience: Unit (Modulus of Resilience), kJ/m3 630
1320
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 25
29
Strength to Weight: Bending, points 23
25
Thermal Diffusivity, mm2/s 4.0
11
Thermal Shock Resistance, points 20
24

Alloy Composition

Boron (B), % 0
0 to 0.0050
Carbon (C), % 0 to 0.030
0 to 0.2
Chromium (Cr), % 19 to 22
0 to 1.5
Copper (Cu), % 0
0 to 0.3
Iron (Fe), % 66.7 to 75.9
91.9 to 100
Manganese (Mn), % 2.0 to 4.0
0 to 1.7
Molybdenum (Mo), % 1.0 to 2.0
0 to 0.7
Nickel (Ni), % 2.0 to 4.0
0 to 2.5
Niobium (Nb), % 0
0 to 0.060
Nitrogen (N), % 0.14 to 0.2
0 to 0.015
Phosphorus (P), % 0 to 0.040
0 to 0.020
Silicon (Si), % 0 to 1.0
0 to 0.8
Sulfur (S), % 0 to 0.030
0 to 0.0080
Titanium (Ti), % 0
0 to 0.050
Vanadium (V), % 0
0 to 0.12
Zirconium (Zr), % 0
0 to 0.15