MakeItFrom.com
Menu (ESC)

S82013 Stainless Steel vs. 7076 Aluminum

S82013 stainless steel belongs to the iron alloys classification, while 7076 aluminum belongs to the aluminum alloys. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is S82013 stainless steel and the bottom bar is 7076 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 260
160
Elastic (Young's, Tensile) Modulus, GPa 200
70
Elongation at Break, % 34
6.2
Fatigue Strength, MPa 400
170
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 78
27
Shear Strength, MPa 470
310
Tensile Strength: Ultimate (UTS), MPa 710
530
Tensile Strength: Yield (Proof), MPa 500
460

Thermal Properties

Latent Heat of Fusion, J/g 290
380
Maximum Temperature: Mechanical, °C 970
170
Melting Completion (Liquidus), °C 1420
630
Melting Onset (Solidus), °C 1380
460
Specific Heat Capacity, J/kg-K 480
860
Thermal Conductivity, W/m-K 15
140
Thermal Expansion, µm/m-K 13
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
35
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
100

Otherwise Unclassified Properties

Base Metal Price, % relative 11
9.5
Density, g/cm3 7.7
3.0
Embodied Carbon, kg CO2/kg material 2.4
8.0
Embodied Energy, MJ/kg 34
150
Embodied Water, L/kg 140
1110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 220
31
Resilience: Unit (Modulus of Resilience), kJ/m3 640
1510
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
45
Strength to Weight: Axial, points 26
49
Strength to Weight: Bending, points 23
48
Thermal Diffusivity, mm2/s 4.0
54
Thermal Shock Resistance, points 20
23

Alloy Composition

Aluminum (Al), % 0
86.9 to 91.2
Carbon (C), % 0 to 0.060
0
Chromium (Cr), % 19.5 to 22
0
Copper (Cu), % 0.2 to 1.2
0.3 to 1.0
Iron (Fe), % 70.5 to 77.1
0 to 0.6
Magnesium (Mg), % 0
1.2 to 2.0
Manganese (Mn), % 2.5 to 3.5
0.3 to 0.8
Nickel (Ni), % 0.5 to 1.5
0
Nitrogen (N), % 0.2 to 0.3
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 0.9
0 to 0.4
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0
7.0 to 8.0
Residuals, % 0
0 to 0.15