MakeItFrom.com
Menu (ESC)

S82013 Stainless Steel vs. EN 1.1191 Steel

Both S82013 stainless steel and EN 1.1191 steel are iron alloys. They have 75% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is S82013 stainless steel and the bottom bar is EN 1.1191 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 260
180 to 200
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 34
16 to 17
Fatigue Strength, MPa 400
210 to 290
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 78
72
Shear Strength, MPa 470
380 to 430
Tensile Strength: Ultimate (UTS), MPa 710
630 to 700
Tensile Strength: Yield (Proof), MPa 500
310 to 440

Thermal Properties

Latent Heat of Fusion, J/g 290
250
Maximum Temperature: Mechanical, °C 970
400
Melting Completion (Liquidus), °C 1420
1460
Melting Onset (Solidus), °C 1380
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 15
48
Thermal Expansion, µm/m-K 13
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 11
2.1
Density, g/cm3 7.7
7.8
Embodied Carbon, kg CO2/kg material 2.4
1.4
Embodied Energy, MJ/kg 34
19
Embodied Water, L/kg 140
47

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 220
83 to 100
Resilience: Unit (Modulus of Resilience), kJ/m3 640
260 to 510
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 26
22 to 25
Strength to Weight: Bending, points 23
21 to 22
Thermal Diffusivity, mm2/s 4.0
13
Thermal Shock Resistance, points 20
20 to 22

Alloy Composition

Carbon (C), % 0 to 0.060
0.42 to 0.5
Chromium (Cr), % 19.5 to 22
0 to 0.4
Copper (Cu), % 0.2 to 1.2
0
Iron (Fe), % 70.5 to 77.1
97.3 to 99.08
Manganese (Mn), % 2.5 to 3.5
0.5 to 0.8
Molybdenum (Mo), % 0
0 to 0.1
Nickel (Ni), % 0.5 to 1.5
0 to 0.4
Nitrogen (N), % 0.2 to 0.3
0
Phosphorus (P), % 0 to 0.040
0 to 0.035
Silicon (Si), % 0 to 0.9
0 to 0.4
Sulfur (S), % 0 to 0.030
0 to 0.035