MakeItFrom.com
Menu (ESC)

S82013 Stainless Steel vs. EN 1.4581 Stainless Steel

Both S82013 stainless steel and EN 1.4581 stainless steel are iron alloys. They have 87% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is S82013 stainless steel and the bottom bar is EN 1.4581 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 260
150
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 34
28
Fatigue Strength, MPa 400
150
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 78
78
Tensile Strength: Ultimate (UTS), MPa 710
510
Tensile Strength: Yield (Proof), MPa 500
210

Thermal Properties

Latent Heat of Fusion, J/g 290
300
Maximum Temperature: Corrosion, °C 430
490
Maximum Temperature: Mechanical, °C 970
990
Melting Completion (Liquidus), °C 1420
1440
Melting Onset (Solidus), °C 1380
1400
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 15
15
Thermal Expansion, µm/m-K 13
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
2.3

Otherwise Unclassified Properties

Base Metal Price, % relative 11
21
Density, g/cm3 7.7
7.8
Embodied Carbon, kg CO2/kg material 2.4
4.2
Embodied Energy, MJ/kg 34
59
Embodied Water, L/kg 140
160

Common Calculations

PREN (Pitting Resistance) 25
26
Resilience: Ultimate (Unit Rupture Work), MJ/m3 220
120
Resilience: Unit (Modulus of Resilience), kJ/m3 640
110
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 26
18
Strength to Weight: Bending, points 23
18
Thermal Diffusivity, mm2/s 4.0
3.9
Thermal Shock Resistance, points 20
12

Alloy Composition

Carbon (C), % 0 to 0.060
0 to 0.070
Chromium (Cr), % 19.5 to 22
18 to 20
Copper (Cu), % 0.2 to 1.2
0
Iron (Fe), % 70.5 to 77.1
61.4 to 71
Manganese (Mn), % 2.5 to 3.5
0 to 1.5
Molybdenum (Mo), % 0
2.0 to 2.5
Nickel (Ni), % 0.5 to 1.5
9.0 to 12
Niobium (Nb), % 0
0 to 1.0
Nitrogen (N), % 0.2 to 0.3
0
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0 to 0.9
0 to 1.5
Sulfur (S), % 0 to 0.030
0 to 0.030