MakeItFrom.com
Menu (ESC)

S82013 Stainless Steel vs. EN 1.4595 Stainless Steel

Both S82013 stainless steel and EN 1.4595 stainless steel are iron alloys. Both are furnished in the annealed condition. They have 90% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is S82013 stainless steel and the bottom bar is EN 1.4595 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 34
29
Fatigue Strength, MPa 400
180
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 78
76
Shear Strength, MPa 470
310
Tensile Strength: Ultimate (UTS), MPa 710
470
Tensile Strength: Yield (Proof), MPa 500
250

Thermal Properties

Latent Heat of Fusion, J/g 290
280
Maximum Temperature: Corrosion, °C 430
460
Maximum Temperature: Mechanical, °C 970
810
Melting Completion (Liquidus), °C 1420
1450
Melting Onset (Solidus), °C 1380
1400
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 15
30
Thermal Expansion, µm/m-K 13
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 11
10
Density, g/cm3 7.7
7.7
Embodied Carbon, kg CO2/kg material 2.4
2.4
Embodied Energy, MJ/kg 34
34
Embodied Water, L/kg 140
110

Common Calculations

PREN (Pitting Resistance) 25
15
Resilience: Ultimate (Unit Rupture Work), MJ/m3 220
110
Resilience: Unit (Modulus of Resilience), kJ/m3 640
150
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 26
17
Strength to Weight: Bending, points 23
17
Thermal Diffusivity, mm2/s 4.0
8.1
Thermal Shock Resistance, points 20
17

Alloy Composition

Carbon (C), % 0 to 0.060
0 to 0.020
Chromium (Cr), % 19.5 to 22
14 to 16
Copper (Cu), % 0.2 to 1.2
0
Iron (Fe), % 70.5 to 77.1
81.3 to 85.8
Manganese (Mn), % 2.5 to 3.5
0 to 1.0
Nickel (Ni), % 0.5 to 1.5
0
Niobium (Nb), % 0
0.2 to 0.6
Nitrogen (N), % 0.2 to 0.3
0 to 0.020
Phosphorus (P), % 0 to 0.040
0 to 0.025
Silicon (Si), % 0 to 0.9
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.015