MakeItFrom.com
Menu (ESC)

S82013 Stainless Steel vs. S36200 Stainless Steel

Both S82013 stainless steel and S36200 stainless steel are iron alloys. They have 90% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is S82013 stainless steel and the bottom bar is S36200 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 34
3.4 to 4.6
Fatigue Strength, MPa 400
450 to 570
Poisson's Ratio 0.28
0.28
Rockwell C Hardness 27
25 to 33
Shear Modulus, GPa 78
76
Shear Strength, MPa 470
680 to 810
Tensile Strength: Ultimate (UTS), MPa 710
1180 to 1410
Tensile Strength: Yield (Proof), MPa 500
960 to 1240

Thermal Properties

Latent Heat of Fusion, J/g 290
280
Maximum Temperature: Corrosion, °C 430
530
Maximum Temperature: Mechanical, °C 970
820
Melting Completion (Liquidus), °C 1420
1440
Melting Onset (Solidus), °C 1380
1400
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 15
16
Thermal Expansion, µm/m-K 13
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 11
12
Density, g/cm3 7.7
7.8
Embodied Carbon, kg CO2/kg material 2.4
2.8
Embodied Energy, MJ/kg 34
40
Embodied Water, L/kg 140
120

Common Calculations

PREN (Pitting Resistance) 25
15
Resilience: Ultimate (Unit Rupture Work), MJ/m3 220
46 to 51
Resilience: Unit (Modulus of Resilience), kJ/m3 640
2380 to 3930
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 26
42 to 50
Strength to Weight: Bending, points 23
32 to 36
Thermal Diffusivity, mm2/s 4.0
4.3
Thermal Shock Resistance, points 20
40 to 48

Alloy Composition

Aluminum (Al), % 0
0 to 0.1
Carbon (C), % 0 to 0.060
0 to 0.050
Chromium (Cr), % 19.5 to 22
14 to 14.5
Copper (Cu), % 0.2 to 1.2
0
Iron (Fe), % 70.5 to 77.1
75.4 to 79.5
Manganese (Mn), % 2.5 to 3.5
0 to 0.5
Molybdenum (Mo), % 0
0 to 0.3
Nickel (Ni), % 0.5 to 1.5
6.5 to 7.0
Nitrogen (N), % 0.2 to 0.3
0
Phosphorus (P), % 0 to 0.040
0 to 0.030
Silicon (Si), % 0 to 0.9
0 to 0.3
Sulfur (S), % 0 to 0.030
0 to 0.030
Titanium (Ti), % 0
0.6 to 0.9