MakeItFrom.com
Menu (ESC)

ZC63A Magnesium vs. EN 1.4596 Stainless Steel

ZC63A magnesium belongs to the magnesium alloys classification, while EN 1.4596 stainless steel belongs to the iron alloys. There are 20 material properties with values for both materials. Properties with values for just one material (14, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ZC63A magnesium and the bottom bar is EN 1.4596 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 48
200
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 19
76
Tensile Strength: Ultimate (UTS), MPa 220
1030 to 1600

Thermal Properties

Latent Heat of Fusion, J/g 330
280
Maximum Temperature: Mechanical, °C 98
790
Melting Completion (Liquidus), °C 550
1450
Melting Onset (Solidus), °C 470
1410
Specific Heat Capacity, J/kg-K 950
470
Thermal Expansion, µm/m-K 26
11

Otherwise Unclassified Properties

Base Metal Price, % relative 13
15
Density, g/cm3 2.1
7.9
Embodied Carbon, kg CO2/kg material 22
3.5
Embodied Energy, MJ/kg 150
48
Embodied Water, L/kg 920
130

Common Calculations

Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 58
25
Strength to Weight: Axial, points 29
36 to 56
Strength to Weight: Bending, points 38
29 to 39
Thermal Shock Resistance, points 12
35 to 54

Alloy Composition

Aluminum (Al), % 0
0.8 to 1.1
Carbon (C), % 0
0 to 0.015
Chromium (Cr), % 0
11.5 to 12.5
Copper (Cu), % 2.4 to 3.0
0
Iron (Fe), % 0
73.4 to 76.4
Magnesium (Mg), % 89.2 to 91.9
0
Manganese (Mn), % 0.25 to 0.75
0 to 0.1
Molybdenum (Mo), % 0
1.9 to 2.2
Nickel (Ni), % 0 to 0.010
9.2 to 10.2
Nitrogen (N), % 0
0 to 0.020
Phosphorus (P), % 0
0 to 0.010
Silicon (Si), % 0 to 0.2
0 to 0.1
Sulfur (S), % 0
0 to 0.0050
Titanium (Ti), % 0
0.28 to 0.4
Zinc (Zn), % 5.5 to 6.5
0
Residuals, % 0 to 0.3
0