MakeItFrom.com
Menu (ESC)

ZC63A Magnesium vs. N08332 Stainless Steel

ZC63A magnesium belongs to the magnesium alloys classification, while N08332 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ZC63A magnesium and the bottom bar is N08332 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 60
170
Elastic (Young's, Tensile) Modulus, GPa 48
200
Elongation at Break, % 3.3
34
Fatigue Strength, MPa 94
170
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 19
76
Shear Strength, MPa 130
350
Tensile Strength: Ultimate (UTS), MPa 220
520
Tensile Strength: Yield (Proof), MPa 130
210

Thermal Properties

Latent Heat of Fusion, J/g 330
310
Maximum Temperature: Mechanical, °C 98
1050
Melting Completion (Liquidus), °C 550
1390
Melting Onset (Solidus), °C 470
1340
Specific Heat Capacity, J/kg-K 950
480
Thermal Conductivity, W/m-K 120
12
Thermal Expansion, µm/m-K 26
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 32
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 140
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 13
32
Density, g/cm3 2.1
8.0
Embodied Carbon, kg CO2/kg material 22
5.4
Embodied Energy, MJ/kg 150
77
Embodied Water, L/kg 920
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.3
140
Resilience: Unit (Modulus of Resilience), kJ/m3 190
110
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 58
24
Strength to Weight: Axial, points 29
18
Strength to Weight: Bending, points 38
18
Thermal Diffusivity, mm2/s 58
3.1
Thermal Shock Resistance, points 12
12

Alloy Composition

Carbon (C), % 0
0.050 to 0.1
Chromium (Cr), % 0
17 to 20
Copper (Cu), % 2.4 to 3.0
0 to 1.0
Iron (Fe), % 0
38.3 to 48.2
Lead (Pb), % 0
0 to 0.0050
Magnesium (Mg), % 89.2 to 91.9
0
Manganese (Mn), % 0.25 to 0.75
0 to 2.0
Nickel (Ni), % 0 to 0.010
34 to 37
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.2
0.75 to 1.5
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0
0 to 0.025
Zinc (Zn), % 5.5 to 6.5
0
Residuals, % 0 to 0.3
0