MakeItFrom.com
Menu (ESC)

ZE63A Magnesium vs. Grade 5 Titanium

ZE63A magnesium belongs to the magnesium alloys classification, while grade 5 titanium belongs to the titanium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ZE63A magnesium and the bottom bar is grade 5 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 46
110
Elongation at Break, % 7.7
8.6 to 11
Fatigue Strength, MPa 120
530 to 630
Poisson's Ratio 0.29
0.32
Shear Modulus, GPa 17
40
Shear Strength, MPa 170
600 to 710
Tensile Strength: Ultimate (UTS), MPa 300
1000 to 1190
Tensile Strength: Yield (Proof), MPa 190
910 to 1110

Thermal Properties

Latent Heat of Fusion, J/g 330
410
Maximum Temperature: Mechanical, °C 170
330
Melting Completion (Liquidus), °C 510
1610
Melting Onset (Solidus), °C 390
1650
Specific Heat Capacity, J/kg-K 950
560
Thermal Conductivity, W/m-K 110
6.8
Thermal Expansion, µm/m-K 27
8.9

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 31
1.0
Electrical Conductivity: Equal Weight (Specific), % IACS 140
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 22
36
Density, g/cm3 2.0
4.4
Embodied Carbon, kg CO2/kg material 24
38
Embodied Energy, MJ/kg 180
610
Embodied Water, L/kg 920
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 20
100 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 400
3980 to 5880
Stiffness to Weight: Axial, points 12
13
Stiffness to Weight: Bending, points 58
35
Strength to Weight: Axial, points 40
62 to 75
Strength to Weight: Bending, points 48
50 to 56
Thermal Diffusivity, mm2/s 57
2.7
Thermal Shock Resistance, points 17
76 to 91

Alloy Composition

Aluminum (Al), % 0
5.5 to 6.8
Carbon (C), % 0
0 to 0.080
Copper (Cu), % 0 to 0.1
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0
0 to 0.4
Magnesium (Mg), % 89.6 to 92
0
Nickel (Ni), % 0 to 0.010
0
Nitrogen (N), % 0
0 to 0.050
Oxygen (O), % 0
0 to 0.2
Titanium (Ti), % 0
87.4 to 91
Unspecified Rare Earths, % 2.1 to 3.0
0
Vanadium (V), % 0
3.5 to 4.5
Yttrium (Y), % 0
0 to 0.0050
Zinc (Zn), % 5.5 to 6.0
0
Zirconium (Zr), % 0.4 to 1.0
0
Residuals, % 0
0 to 0.4