MakeItFrom.com
Menu (ESC)

3003-H28 Aluminum

3003-H28 aluminum is 3003 aluminum in the H28 temper. This is the strongest temper normally produced through the action of strain hardening followed by partial annealing. It is closely related to H18. It has the second lowest ductility compared to the other variants of 3003 aluminum.

The graph bars on the material properties cards below compare 3003-H28 aluminum to: 3000-series alloys (top), all aluminum alloys (middle), and the entire database (bottom). A full bar means this is the highest value in the relevant set. A half-full bar means it's 50% of the highest, and so on.

Mechanical Properties

Brinell Hardness

59

Elastic (Young's, Tensile) Modulus

70 GPa 10 x 106 psi

Elongation at Break

1.7 %

Fatigue Strength

73 MPa 11 x 103 psi

Poisson's Ratio

0.33

Shear Modulus

26 GPa 3.8 x 106 psi

Shear Strength

120 MPa 18 x 103 psi

Tensile Strength: Ultimate (UTS)

210 MPa 31 x 103 psi

Tensile Strength: Yield (Proof)

180 MPa 27 x 103 psi

Thermal Properties

Latent Heat of Fusion

400 J/g

Maximum Temperature: Mechanical

180 °C 360 °F

Melting Completion (Liquidus)

650 °C 1210 °F

Melting Onset (Solidus)

640 °C 1190 °F

Specific Heat Capacity

900 J/kg-K 0.21 BTU/lb-°F

Thermal Conductivity

180 W/m-K 100 BTU/h-ft-°F

Thermal Expansion

23 µm/m-K

Electrical Properties

Electrical Conductivity: Equal Volume

44 % IACS

Electrical Conductivity: Equal Weight (Specific)

140 % IACS

Otherwise Unclassified Properties

Base Metal Price

9.5 % relative

Calomel Potential

-740 mV

Density

2.8 g/cm3 170 lb/ft3

Embodied Carbon

8.1 kg CO2/kg material

Embodied Energy

150 MJ/kg 66 x 103 BTU/lb

Embodied Water

1180 L/kg 140 gal/lb

Common Calculations

Resilience: Ultimate (Unit Rupture Work)

3.4 MJ/m3

Resilience: Unit (Modulus of Resilience)

240 kJ/m3

Stiffness to Weight: Axial

14 points

Stiffness to Weight: Bending

50 points

Strength to Weight: Axial

21 points

Strength to Weight: Bending

28 points

Thermal Diffusivity

71 mm2/s

Thermal Shock Resistance

9.3 points

Alloy Composition

Aluminum (Al)Al 96.8 to 99
Manganese (Mn)Mn 1.0 to 1.5
Iron (Fe)Fe 0 to 0.7
Silicon (Si)Si 0 to 0.6
Copper (Cu)Cu 0.050 to 0.2
Zinc (Zn)Zn 0 to 0.1
Residualsres. 0 to 0.15

All values are % weight. Ranges represent what is permitted under applicable standards.

Followup Questions

Further Reading

ASTM B547: Standard Specification for Aluminum and Aluminum-Alloy Formed and Arc-Welded Round Tube

Environmental Degradation of Advanced and Traditional Engineering Materials, Lloyd H. Hihara et al., 2014.

ASTM B209: Standard Specification for Aluminum and Aluminum-Alloy Sheet and Plate

EN 755-2: Aluminium and aluminium alloys. Extruded rod/bar, tube and profiles. Mechanical properties

EN 485-2: Aluminium and aluminium alloys. Sheet, strip and plate. Mechanical properties

Aluminum Standards and Data, Aluminum Association Inc., 2013

EN 573-3: Aluminium and aluminium alloys. Chemical composition and form of wrought products. Chemical composition and form of products

Properties and Selection: Nonferrous Alloys and Special-Purpose Materials, ASM Handbook vol. 2, ASM International, 1993

CRC Materials Science and Engineering Handbook, 4th ed., James F. Shackelford et al. (editors), 2015