MakeItFrom.com
Menu (ESC)

4015-H111 Aluminum

4015-H111 aluminum is 4015 aluminum in the H111 temper. To achieve this temper, the metal is strain hardened to a strength that is lower than what is permissible for H11 (1/8-hard). It has the highest ductility compared to the other variants of 4015 aluminum.

The graph bars on the material properties cards below compare 4015-H111 aluminum to: 4000-series alloys (top), all aluminum alloys (middle), and the entire database (bottom). A full bar means this is the highest value in the relevant set. A half-full bar means it's 50% of the highest, and so on.

Mechanical Properties

Brinell Hardness

35

Elastic (Young's, Tensile) Modulus

70 GPa 10 x 106 psi

Elongation at Break

23 %

Fatigue Strength

46 MPa 6.7 x 103 psi

Poisson's Ratio

0.33

Shear Modulus

26 GPa 3.8 x 106 psi

Shear Strength

82 MPa 12 x 103 psi

Tensile Strength: Ultimate (UTS)

130 MPa 19 x 103 psi

Tensile Strength: Yield (Proof)

50 MPa 7.3 x 103 psi

Thermal Properties

Latent Heat of Fusion

420 J/g

Maximum Temperature: Mechanical

160 °C 320 °F

Melting Completion (Liquidus)

640 °C 1180 °F

Melting Onset (Solidus)

600 °C 1110 °F

Specific Heat Capacity

900 J/kg-K 0.21 BTU/lb-°F

Thermal Conductivity

160 W/m-K 94 BTU/h-ft-°F

Thermal Expansion

23 µm/m-K

Electrical Properties

Electrical Conductivity: Equal Volume

41 % IACS

Electrical Conductivity: Equal Weight (Specific)

130 % IACS

Otherwise Unclassified Properties

Base Metal Price

9.5 % relative

Density

2.7 g/cm3 170 lb/ft3

Embodied Carbon

8.1 kg CO2/kg material

Embodied Energy

150 MJ/kg 65 x 103 BTU/lb

Embodied Water

1160 L/kg 140 gal/lb

Common Calculations

Resilience: Ultimate (Unit Rupture Work)

23 MJ/m3

Resilience: Unit (Modulus of Resilience)

18 kJ/m3

Stiffness to Weight: Axial

14 points

Stiffness to Weight: Bending

50 points

Strength to Weight: Axial

13 points

Strength to Weight: Bending

21 points

Thermal Diffusivity

66 mm2/s

Thermal Shock Resistance

5.7 points

Alloy Composition

Aluminum (Al)Al 94.9 to 97.9
Silicon (Si)Si 1.4 to 2.2
Manganese (Mn)Mn 0.6 to 1.2
Iron (Fe)Fe 0 to 0.7
Magnesium (Mg)Mg 0.1 to 0.5
Zinc (Zn)Zn 0 to 0.2
Copper (Cu)Cu 0 to 0.2
Residualsres. 0 to 0.15

All values are % weight. Ranges represent what is permitted under applicable standards.

Followup Questions

Further Reading

EN 485-2: Aluminium and aluminium alloys. Sheet, strip and plate. Mechanical properties

ISO 6361-2: Wrought aluminium and aluminium alloys - Sheets, strips and plates - Part 2: Mechanical properties

EN 573-3: Aluminium and aluminium alloys. Chemical composition and form of wrought products. Chemical composition and form of products

Properties and Selection: Nonferrous Alloys and Special-Purpose Materials, ASM Handbook vol. 2, ASM International, 1993

CRC Materials Science and Engineering Handbook, 4th ed., James F. Shackelford et al. (editors), 2015