MakeItFrom.com
Menu (ESC)

Cold Worked (+C800) 1.4305 Stainless Steel

EN 1.4305 +C800 steel is EN 1.4305 stainless steel in the cold worked (strain hardened) condition. It has the highest strength and lowest ductility compared to the other variants of EN 1.4305 stainless steel.

The graph bars on the material properties cards below compare EN 1.4305 +C800 steel to: wrought austenitic stainless steels (top), all iron alloys (middle), and the entire database (bottom). A full bar means this is the highest value in the relevant set. A half-full bar means it's 50% of the highest, and so on.

Mechanical Properties

Brinell Hardness

270

Elastic (Young's, Tensile) Modulus

200 GPa 28 x 106 psi

Elongation at Break

14 %

Fatigue Strength

330 MPa 47 x 103 psi

Poisson's Ratio

0.28

Shear Modulus

77 GPa 11 x 106 psi

Shear Strength

550 MPa 79 x 103 psi

Tensile Strength: Ultimate (UTS)

900 MPa 130 x 103 psi

Tensile Strength: Yield (Proof)

570 MPa 83 x 103 psi

Thermal Properties

Latent Heat of Fusion

290 J/g

Maximum Temperature: Corrosion

410 °C 780 °F

Maximum Temperature: Mechanical

930 °C 1700 °F

Melting Completion (Liquidus)

1420 °C 2590 °F

Melting Onset (Solidus)

1380 °C 2510 °F

Specific Heat Capacity

480 J/kg-K 0.11 BTU/lb-°F

Thermal Conductivity

15 W/m-K 8.7 BTU/h-ft-°F

Thermal Expansion

16 µm/m-K

Electrical Properties

Electrical Conductivity: Equal Volume

2.4 % IACS

Electrical Conductivity: Equal Weight (Specific)

2.7 % IACS

Otherwise Unclassified Properties

Base Metal Price

15 % relative

Density

7.8 g/cm3 490 lb/ft3

Embodied Carbon

3.0 kg CO2/kg material

Embodied Energy

42 MJ/kg 18 x 103 BTU/lb

Embodied Water

140 L/kg 17 gal/lb

Common Calculations

PREN (Pitting Resistance)

19

Resilience: Ultimate (Unit Rupture Work)

110 MJ/m3

Resilience: Unit (Modulus of Resilience)

830 kJ/m3

Stiffness to Weight: Axial

14 points

Stiffness to Weight: Bending

25 points

Strength to Weight: Axial

32 points

Strength to Weight: Bending

27 points

Thermal Diffusivity

4.0 mm2/s

Thermal Shock Resistance

20 points

Alloy Composition

Iron (Fe)Fe 66.4 to 74.9
Chromium (Cr)Cr 17 to 19
Nickel (Ni)Ni 8.0 to 10
Manganese (Mn)Mn 0 to 2.0
Silicon (Si)Si 0 to 1.0
Copper (Cu)Cu 0 to 1.0
Sulfur (S)S 0.15 to 0.35
Carbon (C)C 0 to 0.1
Nitrogen (N)N 0 to 0.1
Phosphorus (P)P 0 to 0.045

All values are % weight. Ranges represent what is permitted under applicable standards.

Followup Questions

Further Reading

EN 10088-3: Stainless steels - Part 3: Technical delivery conditions for semi-finished products, bars, rods, wire, sections and bright products of corrosion resisting steels for general purposes

EN 10088-1: Stainless steels - Part 1: List of stainless steels

Corrosion of Austenitic Stainless Steels: Mechanism, Mitigation and Monitoring, H. S. Khatak and B. Raj (editors), 2002

Austenitic Stainless Steels: Microstructure and Mechanical Properties, P. Marshall, 1984

Corrosion of Stainless Steels, A. John Sedriks, 1996

Advances in Stainless Steels, Baldev Raj et al. (editors), 2010