MakeItFrom.com
Menu (ESC)

Hot Rolled 1090 Carbon Steel

Hot rolled SAE-AISI 1090 is SAE-AISI 1090 steel in the hot worked condition. The graph bars on the material properties cards below compare hot rolled SAE-AISI 1090 to: wrought carbon or non-alloy steels (top), all iron alloys (middle), and the entire database (bottom). A full bar means this is the highest value in the relevant set. A half-full bar means it's 50% of the highest, and so on.

Mechanical Properties

Brinell Hardness

280

Elastic (Young's, Tensile) Modulus

190 GPa 27 x 106 psi

Elongation at Break

11 %

Fatigue Strength

320 MPa 47 x 103 psi

Poisson's Ratio

0.29

Reduction in Area

28 %

Shear Modulus

72 GPa 10 x 106 psi

Shear Strength

570 MPa 82 x 103 psi

Tensile Strength: Ultimate (UTS)

950 MPa 140 x 103 psi

Tensile Strength: Yield (Proof)

520 MPa 76 x 103 psi

Thermal Properties

Latent Heat of Fusion

240 J/g

Maximum Temperature: Mechanical

400 °C 750 °F

Melting Completion (Liquidus)

1450 °C 2650 °F

Melting Onset (Solidus)

1410 °C 2570 °F

Specific Heat Capacity

470 J/kg-K 0.11 BTU/lb-°F

Thermal Conductivity

50 W/m-K 29 BTU/h-ft-°F

Thermal Expansion

12 µm/m-K

Electrical Properties

Electrical Conductivity: Equal Volume

7.1 % IACS

Electrical Conductivity: Equal Weight (Specific)

8.2 % IACS

Otherwise Unclassified Properties

Base Metal Price

1.8 % relative

Density

7.8 g/cm3 490 lb/ft3

Embodied Carbon

1.4 kg CO2/kg material

Embodied Energy

19 MJ/kg 8.0 x 103 BTU/lb

Embodied Water

46 L/kg 5.5 gal/lb

Common Calculations

Resilience: Ultimate (Unit Rupture Work)

91 MJ/m3

Resilience: Unit (Modulus of Resilience)

730 kJ/m3

Stiffness to Weight: Axial

13 points

Stiffness to Weight: Bending

24 points

Strength to Weight: Axial

34 points

Strength to Weight: Bending

27 points

Thermal Diffusivity

13 mm2/s

Thermal Shock Resistance

31 points

Alloy Composition

Iron (Fe)Fe 98 to 98.6
Carbon (C)C 0.85 to 1.0
Manganese (Mn)Mn 0.6 to 0.9
Sulfur (S)S 0 to 0.050
Phosphorus (P)P 0 to 0.040

All values are % weight. Ranges represent what is permitted under applicable standards.

Followup Questions

Further Reading

ASTM A29: Standard Specification for Steel Bars, Carbon and Alloy, Hot-Wrought, General Requirements for

Microstructure of Steels and Cast Irons, Madeleine Durand-Charre, 2004

Carbon Steel Handbook, D. Gandy, 2007

ASM Specialty Handbook: Carbon and Alloy Steels, J. R. Davis (editor), 1996

Ferrous Materials: Steel and Cast Iron, Hans Berns and Werner Theisen, 2008

CRC Materials Science and Engineering Handbook, 4th ed., James F. Shackelford et al. (editors), 2015

Steels: Processing, Structure, and Performance, 2nd ed., George Krauss, 2015