MakeItFrom.com
Menu (ESC)

204.0 Aluminum vs. Nickel 693

204.0 aluminum belongs to the aluminum alloys classification, while nickel 693 belongs to the nickel alloys. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 204.0 aluminum and the bottom bar is nickel 693.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
200
Elongation at Break, % 5.7 to 7.8
34
Fatigue Strength, MPa 63 to 77
230
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
76
Tensile Strength: Ultimate (UTS), MPa 230 to 340
660
Tensile Strength: Yield (Proof), MPa 180 to 220
310

Thermal Properties

Latent Heat of Fusion, J/g 390
330
Maximum Temperature: Mechanical, °C 170
1010
Melting Completion (Liquidus), °C 650
1350
Melting Onset (Solidus), °C 580
1310
Specific Heat Capacity, J/kg-K 880
480
Thermal Conductivity, W/m-K 120
9.1
Thermal Expansion, µm/m-K 19
13

Otherwise Unclassified Properties

Base Metal Price, % relative 11
60
Density, g/cm3 3.0
8.1
Embodied Carbon, kg CO2/kg material 8.0
9.9
Embodied Energy, MJ/kg 150
140
Embodied Water, L/kg 1150
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 23
190
Resilience: Unit (Modulus of Resilience), kJ/m3 220 to 350
250
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 46
24
Strength to Weight: Axial, points 21 to 31
23
Strength to Weight: Bending, points 28 to 36
21
Thermal Diffusivity, mm2/s 46
2.3
Thermal Shock Resistance, points 12 to 18
19

Alloy Composition

Aluminum (Al), % 93.4 to 95.5
2.5 to 4.0
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0
27 to 31
Copper (Cu), % 4.2 to 5.0
0 to 0.5
Iron (Fe), % 0 to 0.35
2.5 to 6.0
Magnesium (Mg), % 0.15 to 0.35
0
Manganese (Mn), % 0 to 0.1
0 to 1.0
Nickel (Ni), % 0 to 0.050
53.3 to 67.5
Niobium (Nb), % 0
0.5 to 2.5
Silicon (Si), % 0 to 0.2
0 to 0.5
Sulfur (S), % 0
0 to 0.010
Tin (Sn), % 0 to 0.050
0
Titanium (Ti), % 0.15 to 0.3
0 to 1.0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0