MakeItFrom.com
Menu (ESC)

206.0 Aluminum vs. EN 1.4508 Stainless Steel

206.0 aluminum belongs to the aluminum alloys classification, while EN 1.4508 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 206.0 aluminum and the bottom bar is EN 1.4508 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
200
Elongation at Break, % 8.4 to 12
34
Fatigue Strength, MPa 88 to 210
210
Impact Strength: V-Notched Charpy, J 9.5
90
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
79
Tensile Strength: Ultimate (UTS), MPa 330 to 440
570
Tensile Strength: Yield (Proof), MPa 190 to 350
260

Thermal Properties

Latent Heat of Fusion, J/g 390
300
Maximum Temperature: Mechanical, °C 170
1000
Melting Completion (Liquidus), °C 650
1450
Melting Onset (Solidus), °C 570
1400
Specific Heat Capacity, J/kg-K 880
470
Thermal Conductivity, W/m-K 120
15
Thermal Expansion, µm/m-K 19
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
2.1
Electrical Conductivity: Equal Weight (Specific), % IACS 99
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 11
20
Density, g/cm3 3.0
7.9
Embodied Carbon, kg CO2/kg material 8.0
4.0
Embodied Energy, MJ/kg 150
55
Embodied Water, L/kg 1150
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24 to 49
160
Resilience: Unit (Modulus of Resilience), kJ/m3 270 to 840
170
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
25
Strength to Weight: Axial, points 30 to 40
20
Strength to Weight: Bending, points 35 to 42
19
Thermal Diffusivity, mm2/s 46
4.1
Thermal Shock Resistance, points 17 to 23
17

Alloy Composition

Aluminum (Al), % 93.3 to 95.3
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
18 to 20
Copper (Cu), % 4.2 to 5.0
0
Iron (Fe), % 0 to 0.15
61.2 to 69.9
Magnesium (Mg), % 0.15 to 0.35
0
Manganese (Mn), % 0.2 to 0.5
0 to 1.5
Molybdenum (Mo), % 0
3.0 to 3.5
Nickel (Ni), % 0 to 0.050
9.0 to 12
Nitrogen (N), % 0
0.1 to 0.2
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.1
0 to 1.5
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.050
0
Titanium (Ti), % 0.15 to 0.3
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0