MakeItFrom.com
Menu (ESC)

242.0 Aluminum vs. EN 1.4596 Stainless Steel

242.0 aluminum belongs to the aluminum alloys classification, while EN 1.4596 stainless steel belongs to the iron alloys. There are 20 material properties with values for both materials. Properties with values for just one material (15, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 242.0 aluminum and the bottom bar is EN 1.4596 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 73
200
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
76
Tensile Strength: Ultimate (UTS), MPa 180 to 290
1030 to 1600

Thermal Properties

Latent Heat of Fusion, J/g 390
280
Maximum Temperature: Mechanical, °C 210
790
Melting Completion (Liquidus), °C 640
1450
Melting Onset (Solidus), °C 530
1410
Specific Heat Capacity, J/kg-K 870
470
Thermal Expansion, µm/m-K 22
11

Otherwise Unclassified Properties

Base Metal Price, % relative 12
15
Density, g/cm3 3.1
7.9
Embodied Carbon, kg CO2/kg material 8.3
3.5
Embodied Energy, MJ/kg 150
48
Embodied Water, L/kg 1130
130

Common Calculations

Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 45
25
Strength to Weight: Axial, points 16 to 26
36 to 56
Strength to Weight: Bending, points 23 to 32
29 to 39
Thermal Shock Resistance, points 8.0 to 13
35 to 54

Alloy Composition

Aluminum (Al), % 88.4 to 93.6
0.8 to 1.1
Carbon (C), % 0
0 to 0.015
Chromium (Cr), % 0 to 0.25
11.5 to 12.5
Copper (Cu), % 3.5 to 4.5
0
Iron (Fe), % 0 to 1.0
73.4 to 76.4
Magnesium (Mg), % 1.2 to 1.8
0
Manganese (Mn), % 0 to 0.35
0 to 0.1
Molybdenum (Mo), % 0
1.9 to 2.2
Nickel (Ni), % 1.7 to 2.3
9.2 to 10.2
Nitrogen (N), % 0
0 to 0.020
Phosphorus (P), % 0
0 to 0.010
Silicon (Si), % 0 to 0.7
0 to 0.1
Sulfur (S), % 0
0 to 0.0050
Titanium (Ti), % 0 to 0.25
0.28 to 0.4
Zinc (Zn), % 0 to 0.35
0
Residuals, % 0 to 0.15
0