MakeItFrom.com
Menu (ESC)

295.0 Aluminum vs. Grade 25 Titanium

295.0 aluminum belongs to the aluminum alloys classification, while grade 25 titanium belongs to the titanium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is 295.0 aluminum and the bottom bar is grade 25 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
110
Elongation at Break, % 2.0 to 7.2
11
Fatigue Strength, MPa 44 to 55
550
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 27
40
Shear Strength, MPa 180 to 230
600
Tensile Strength: Ultimate (UTS), MPa 230 to 280
1000
Tensile Strength: Yield (Proof), MPa 100 to 220
940

Thermal Properties

Latent Heat of Fusion, J/g 400
410
Maximum Temperature: Mechanical, °C 170
340
Melting Completion (Liquidus), °C 640
1610
Melting Onset (Solidus), °C 530
1560
Specific Heat Capacity, J/kg-K 880
560
Thermal Conductivity, W/m-K 140
7.1
Thermal Expansion, µm/m-K 23
9.6

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
1.0
Electrical Conductivity: Equal Weight (Specific), % IACS 100
2.0

Otherwise Unclassified Properties

Density, g/cm3 3.0
4.5
Embodied Carbon, kg CO2/kg material 7.9
43
Embodied Energy, MJ/kg 150
700
Embodied Water, L/kg 1140
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.2 to 13
110
Resilience: Unit (Modulus of Resilience), kJ/m3 77 to 340
4220
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 46
35
Strength to Weight: Axial, points 21 to 26
62
Strength to Weight: Bending, points 27 to 32
50
Thermal Diffusivity, mm2/s 54
2.8
Thermal Shock Resistance, points 9.8 to 12
71

Alloy Composition

Aluminum (Al), % 91.4 to 95.3
5.5 to 6.8
Carbon (C), % 0
0 to 0.080
Copper (Cu), % 4.0 to 5.0
0
Hydrogen (H), % 0
0 to 0.013
Iron (Fe), % 0 to 1.0
0 to 0.4
Magnesium (Mg), % 0 to 0.030
0
Manganese (Mn), % 0 to 0.35
0
Nickel (Ni), % 0
0.3 to 0.8
Nitrogen (N), % 0
0 to 0.050
Oxygen (O), % 0
0 to 0.2
Palladium (Pd), % 0
0.040 to 0.080
Silicon (Si), % 0.7 to 1.5
0
Titanium (Ti), % 0 to 0.25
86.7 to 90.6
Vanadium (V), % 0
3.5 to 4.5
Zinc (Zn), % 0 to 0.35
0
Residuals, % 0
0 to 0.4