MakeItFrom.com
Menu (ESC)

295.0 Aluminum vs. Nickel 693

295.0 aluminum belongs to the aluminum alloys classification, while nickel 693 belongs to the nickel alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 295.0 aluminum and the bottom bar is nickel 693.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
200
Elongation at Break, % 2.0 to 7.2
34
Fatigue Strength, MPa 44 to 55
230
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
76
Shear Strength, MPa 180 to 230
440
Tensile Strength: Ultimate (UTS), MPa 230 to 280
660
Tensile Strength: Yield (Proof), MPa 100 to 220
310

Thermal Properties

Latent Heat of Fusion, J/g 400
330
Maximum Temperature: Mechanical, °C 170
1010
Melting Completion (Liquidus), °C 640
1350
Melting Onset (Solidus), °C 530
1310
Specific Heat Capacity, J/kg-K 880
480
Thermal Conductivity, W/m-K 140
9.1
Thermal Expansion, µm/m-K 23
13

Otherwise Unclassified Properties

Base Metal Price, % relative 10
60
Density, g/cm3 3.0
8.1
Embodied Carbon, kg CO2/kg material 7.9
9.9
Embodied Energy, MJ/kg 150
140
Embodied Water, L/kg 1140
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.2 to 13
190
Resilience: Unit (Modulus of Resilience), kJ/m3 77 to 340
250
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 46
24
Strength to Weight: Axial, points 21 to 26
23
Strength to Weight: Bending, points 27 to 32
21
Thermal Diffusivity, mm2/s 54
2.3
Thermal Shock Resistance, points 9.8 to 12
19

Alloy Composition

Aluminum (Al), % 91.4 to 95.3
2.5 to 4.0
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0
27 to 31
Copper (Cu), % 4.0 to 5.0
0 to 0.5
Iron (Fe), % 0 to 1.0
2.5 to 6.0
Magnesium (Mg), % 0 to 0.030
0
Manganese (Mn), % 0 to 0.35
0 to 1.0
Nickel (Ni), % 0
53.3 to 67.5
Niobium (Nb), % 0
0.5 to 2.5
Silicon (Si), % 0.7 to 1.5
0 to 0.5
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0 to 0.25
0 to 1.0
Zinc (Zn), % 0 to 0.35
0
Residuals, % 0 to 0.15
0