MakeItFrom.com
Menu (ESC)

295.0-T6 Aluminum vs. 6262-T6 Aluminum

Both 295.0-T6 aluminum and 6262-T6 aluminum are aluminum alloys. Both are furnished in the T6 temper. They have a moderately high 95% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 295.0-T6 aluminum and the bottom bar is 6262-T6 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
68
Elongation at Break, % 3.8
10
Fatigue Strength, MPa 50
110
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
26
Shear Strength, MPa 210
190
Tensile Strength: Ultimate (UTS), MPa 250
320
Tensile Strength: Yield (Proof), MPa 160
270

Thermal Properties

Latent Heat of Fusion, J/g 400
400
Maximum Temperature: Mechanical, °C 170
160
Melting Completion (Liquidus), °C 640
650
Melting Onset (Solidus), °C 530
580
Specific Heat Capacity, J/kg-K 880
890
Thermal Conductivity, W/m-K 140
170
Thermal Expansion, µm/m-K 23
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
44
Electrical Conductivity: Equal Weight (Specific), % IACS 100
140

Otherwise Unclassified Properties

Base Metal Price, % relative 10
10
Density, g/cm3 3.0
2.8
Embodied Carbon, kg CO2/kg material 7.9
8.3
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1140
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 8.3
31
Resilience: Unit (Modulus of Resilience), kJ/m3 180
530
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 46
48
Strength to Weight: Axial, points 23
31
Strength to Weight: Bending, points 29
37
Thermal Diffusivity, mm2/s 54
69
Thermal Shock Resistance, points 11
14

Alloy Composition

Aluminum (Al), % 91.4 to 95.3
94.7 to 97.8
Bismuth (Bi), % 0
0.4 to 0.7
Chromium (Cr), % 0
0.040 to 0.14
Copper (Cu), % 4.0 to 5.0
0.15 to 0.4
Iron (Fe), % 0 to 1.0
0 to 0.7
Lead (Pb), % 0
0.4 to 0.7
Magnesium (Mg), % 0 to 0.030
0.8 to 1.2
Manganese (Mn), % 0 to 0.35
0 to 0.15
Silicon (Si), % 0.7 to 1.5
0.4 to 0.8
Titanium (Ti), % 0 to 0.25
0 to 0.15
Zinc (Zn), % 0 to 0.35
0 to 0.25
Residuals, % 0
0 to 0.15