MakeItFrom.com
Menu (ESC)

3003 Aluminum vs. AWS BNi-5

3003 aluminum belongs to the aluminum alloys classification, while AWS BNi-5 belongs to the nickel alloys. There are 19 material properties with values for both materials. Properties with values for just one material (14, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 3003 aluminum and the bottom bar is AWS BNi-5.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
190
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
72
Tensile Strength: Ultimate (UTS), MPa 110 to 240
470

Thermal Properties

Latent Heat of Fusion, J/g 400
470
Melting Completion (Liquidus), °C 650
1140
Melting Onset (Solidus), °C 640
1080
Specific Heat Capacity, J/kg-K 900
510
Thermal Expansion, µm/m-K 23
12

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
55
Density, g/cm3 2.8
7.7
Embodied Carbon, kg CO2/kg material 8.1
8.9
Embodied Energy, MJ/kg 150
130
Embodied Water, L/kg 1180
260

Common Calculations

Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 11 to 24
17
Strength to Weight: Bending, points 18 to 30
17
Thermal Shock Resistance, points 4.7 to 10
15

Alloy Composition

Aluminum (Al), % 96.8 to 99
0 to 0.050
Boron (B), % 0
0 to 0.030
Carbon (C), % 0
0 to 0.060
Chromium (Cr), % 0
18.5 to 19.5
Cobalt (Co), % 0
0 to 0.1
Copper (Cu), % 0.050 to 0.2
0
Iron (Fe), % 0 to 0.7
0
Manganese (Mn), % 1.0 to 1.5
0
Nickel (Ni), % 0
69.1 to 71.8
Phosphorus (P), % 0
0 to 0.020
Selenium (Se), % 0
0 to 0.0050
Silicon (Si), % 0 to 0.6
9.8 to 10.5
Sulfur (S), % 0
0 to 0.020
Titanium (Ti), % 0
0 to 0.050
Zinc (Zn), % 0 to 0.1
0
Zirconium (Zr), % 0
0 to 0.050
Residuals, % 0
0 to 0.5